From c39ed54256ffe240677d4199d2cfa6b57f9dce3f Mon Sep 17 00:00:00 2001 From: andhikarei <andhikareihan349@gmail.com> Date: Wed, 16 Mar 2022 09:55:56 +0700 Subject: [PATCH] Add dummy cuda --- src/serial _real.c | 277 +++++++++++++++++++++++++++++++++++++++++++++ src/serial.c | 185 +++++++++++++++++++++++++++++- 2 files changed, 460 insertions(+), 2 deletions(-) create mode 100644 src/serial _real.c diff --git a/src/serial _real.c b/src/serial _real.c new file mode 100644 index 0000000..ab02e0f --- /dev/null +++ b/src/serial _real.c @@ -0,0 +1,277 @@ +// serial.c + +#include <stdio.h> +#include <stdlib.h> +#include <time.h> + +#define NMAX 100 +#define DATAMAX 1000 +#define DATAMIN -1000 + +/* + * Struct Matrix + * + * Matrix representation consists of matrix data + * and effective dimensions + * */ +typedef struct Matrix { + int mat[NMAX][NMAX]; // Matrix cells + int row_eff; // Matrix effective row + int col_eff; // Matrix effective column +} Matrix; + + +/* + * Procedure init_matrix + * + * Initializing newly allocated matrix + * Setting all data to 0 and effective dimensions according + * to nrow and ncol + * */ +void init_matrix(Matrix *m, int nrow, int ncol) { + m->row_eff = nrow; + m->col_eff = ncol; + + for (int i = 0; i < m->row_eff; i++) { + for (int j = 0; j < m->col_eff; j++) { + m->mat[i][j] = 0; + } + } +} + + +/* + * Function input_matrix + * + * Returns a matrix with values from stdin input + * */ +Matrix input_matrix(int nrow, int ncol) { + Matrix input; + init_matrix(&input, nrow, ncol); + + for (int i = 0; i < nrow; i++) { + for (int j = 0; j < ncol; j++) { + scanf("%d", &input.mat[i][j]); + } + } + + return input; +} + + +/* + * Procedure print_matrix + * + * Print matrix data + * */ +void print_matrix(Matrix *m) { + for (int i = 0; i < m->row_eff; i++) { + for (int j = 0; j < m->col_eff; j++) { + printf("%d ", m->mat[i][j]); + } + printf("\n"); + } +} + + +/* + * Function get_matrix_datarange + * + * Returns the range between maximum and minimum + * element of a matrix + * */ +int get_matrix_datarange(Matrix *m) { + int max = DATAMIN; + int min = DATAMAX; + for (int i = 0; i < m->row_eff; i++) { + for (int j = 0; j < m->col_eff; j++) { + int el = m->mat[i][j]; + if (el > max) max = el; + if (el < min) min = el; + } + } + + return max - min; +} + + +/* + * Function supression_op + * + * Returns the sum of intermediate value of special multiplication + * operation where kernel[0][0] corresponds to target[row][col] + * */ +int supression_op(Matrix *kernel, Matrix *target, int row, int col) { + int intermediate_sum = 0; + for (int i = 0; i < kernel->row_eff; i++) { + for (int j = 0; j < kernel->col_eff; j++) { + intermediate_sum += kernel->mat[i][j] * target->mat[row + i][col + j]; + } + } + + return intermediate_sum; +} + + +/* + * Function convolution + * + * Return the output matrix of convolution operation + * between kernel and target + * */ +Matrix convolution(Matrix *kernel, Matrix *target) { + Matrix out; + int out_row_eff = target->row_eff - kernel->row_eff + 1; + int out_col_eff = target->col_eff - kernel->col_eff + 1; + + init_matrix(&out, out_row_eff, out_col_eff); + + for (int i = 0; i < out.row_eff; i++) { + for (int j = 0; j < out.col_eff; j++) { + out.mat[i][j] = supression_op(kernel, target, i, j); + } + } + + return out; +} + + +/* + * Procedure merge_array + * + * Merges two subarrays of n with n[left..mid] and n[mid+1..right] + * to n itself, with n now ordered ascendingly + * */ +void merge_array(int *n, int left, int mid, int right) { + int n_left = mid - left + 1; + int n_right = right - mid; + int iter_left = 0, iter_right = 0, iter_merged = left; + int arr_left[n_left], arr_right[n_right]; + + for (int i = 0; i < n_left; i++) { + arr_left[i] = n[i + left]; + } + + for (int i = 0; i < n_right; i++) { + arr_right[i] = n[i + mid + 1]; + } + + while (iter_left < n_left && iter_right < n_right) { + if (arr_left[iter_left] <= arr_right[iter_right]) { + n[iter_merged] = arr_left[iter_left++]; + } else { + n[iter_merged] = arr_right[iter_right++]; + } + iter_merged++; + } + + while (iter_left < n_left) { + n[iter_merged++] = arr_left[iter_left++]; + } + while (iter_right < n_right) { + n[iter_merged++] = arr_right[iter_right++]; + } +} + + +/* + * Procedure merge_sort + * + * Sorts array n with merge sort algorithm + * */ +void merge_sort(int *n, int left, int right) { + if (left < right) { + int mid = left + (right - left) / 2; + + merge_sort(n, left, mid); + merge_sort(n, mid + 1, right); + + merge_array(n, left, mid, right); + } +} + + +/* + * Procedure print_array + * + * Prints all elements of array n of size to stdout + * */ +void print_array(int *n, int size) { + for (int i = 0; i < size; i++ ) printf("%d ", n[i]); + printf("\n"); +} + + +/* + * Function get_median + * + * Returns median of array n of length + * */ +int get_median(int *n, int length) { + int mid = length / 2; + if (length & 1) return n[mid]; + + return (n[mid - 1] + n[mid]) / 2; +} + + +/* + * Function get_floored_mean + * + * Returns floored mean from an array of integers + * */ +long get_floored_mean(int *n, int length) { + long sum = 0; + for (int i = 0; i < length; i++) { + sum += n[i]; + } + + return sum / length; +} + + + +// main() driver +int main() { + // Time. + clock_t t; + t = clock(); + + int kernel_row, kernel_col, target_row, target_col, num_targets; + + // reads kernel's row and column and initalize kernel matrix from input + scanf("%d %d", &kernel_row, &kernel_col); + Matrix kernel = input_matrix(kernel_row, kernel_col); + + // reads number of target matrices and their dimensions. + // initialize array of matrices and array of data ranges (int) + scanf("%d %d %d", &num_targets, &target_row, &target_col); + Matrix* arr_mat = (Matrix*)malloc(num_targets * sizeof(Matrix)); + int arr_range[num_targets]; + + // read each target matrix, compute their convolution matrices, and compute their data ranges + for (int i = 0; i < num_targets; i++) { + arr_mat[i] = input_matrix(target_row, target_col); + arr_mat[i] = convolution(&kernel, &arr_mat[i]); + arr_range[i] = get_matrix_datarange(&arr_mat[i]); + } + + // sort the data range array + merge_sort(arr_range, 0, num_targets - 1); + + int median = get_median(arr_range, num_targets); + int floored_mean = get_floored_mean(arr_range, num_targets); + + // print the min, max, median, and floored mean of data range array + printf("%d\n%d\n%d\n%d\n", + arr_range[0], + arr_range[num_targets - 1], + median, + floored_mean); + + // Print execution time in seconds. + t = clock() - t; + printf("\nRuntime: %f s\n", ((float)t) / CLOCKS_PER_SEC); + + return 0; +} diff --git a/src/serial.c b/src/serial.c index ab02e0f..f4a69bd 100644 --- a/src/serial.c +++ b/src/serial.c @@ -3,6 +3,7 @@ #include <stdio.h> #include <stdlib.h> #include <time.h> +#include <math.h> #define NMAX 100 #define DATAMAX 1000 @@ -229,6 +230,134 @@ long get_floored_mean(int *n, int length) { return sum / length; } +/** + * Function index_to_row_major + * + * Returns the index of a matrix element in row-major order + */ +int index_to_row_major(int row, int col, int row_eff, int col_eff) { + return row * col_eff + col; +} + +// __device__ int d_index_to_row_major(int row, int col, int row_eff, int col_eff) { +// return row * col_eff + col; +// } + +/** + * Function row_major_to_index + * + * Returns the row and column of a matrix element in row-major order + */ +void row_major_to_index(int index, int row_eff, int col_eff, int *row, int *col) { + *row = index / col_eff; + *col = index % col_eff; +} + +// __device__ void d_row_major_to_index(int index, int row_eff, int col_eff, int *row, int *col) { +// *row = index / col_eff; +// *col = index % col_eff; +// } + +/** + * Function map_matrix + * + * Returns a row major matrix of the input matrix. + **/ +int* map_matrix(int mat[][100], int row, int col) { + int* map = (int*) malloc(sizeof(int) * row * col); + for (int i = 0; i < row; i++) { + for (int j = 0; j < col; j++) { + map[index_to_row_major(i, j, row, col)] = mat[i][j]; + } + } + return map; +} + +/** + * Function reverse_map_matrix + * + * Returns a matrix of the input row major matrix. + */ +int** reverse_map_matrix(int* map, int row, int col) { + int** mat = (int**) malloc(sizeof(int*) * row); + for (int i = 0; i < row; i++) { + mat[i] = (int*) malloc(sizeof(int) * col); + for (int j = 0; j < col; j++) { + mat[i][j] = map[index_to_row_major(i, j, row, col)]; + } + } + return mat; +} + +/** + * Function rm_to_matrix_object + * + * Return Matrix struct of row major matrix + */ +Matrix rm_to_matrix_object(int* map, int row, int col) { + Matrix mat; + init_matrix(&mat, row, col); + for (int i = 0; i < row; i++) { + for (int j = 0; j < col; j++) { + mat.mat[i][j] = map[index_to_row_major(i, j, row, col)]; + } + } + return mat; +} + +/** + * Function cuda_convolution + * + * Returns a matrix of the convolution of the input matrix with the kernel + */ +void cuda_convolution(int* d_out_mat, int* arr_mat_rm, int* kernel_rm, int row_eff, int col_eff, int kernel_row, int kernel_col) { + // Calculate real row and column of input matrix. + int row = row_eff + kernel_row - 1; + int col = col_eff + kernel_col - 1; + + // For each element in input matrix that is not on the boundary, + for (int i = 0; i < row_eff; i++) { + for (int j = 0; j < col_eff; j++) { + // Convolution of the element with the kernel. + // Calculate the sum of the kernel and the input matrix. + int intermediate_sum = 0; + for (int k = 0; k < kernel_row; k++) { + for (int l = 0; l < kernel_col; l++) { + int index = index_to_row_major(i + k, j + l, row, col); + int kernel_index = index_to_row_major(k, l, kernel_row, kernel_col); + intermediate_sum += arr_mat_rm[index] * kernel_rm[kernel_index]; + } + } + // Store the sum in the output matrix. + d_out_mat[index_to_row_major(i, j, row_eff, col_eff)] = intermediate_sum; + } + } +} + +// __global__ void d_cuda_convolution(int* d_out_mat, int* arr_mat_rm, int* kernel_rm, int row_eff, int col_eff, int kernel_row, int kernel_col) { +// // Calculate real row and column of input matrix. +// int row = row_eff + kernel_row - 1; +// int col = col_eff + kernel_col - 1; +// +// // Get i, and j from threadIdx +// int tid = blockIdx.x * blockDim.x + threadIdx.x; +// int i, j; +// d_row_major_to_index(tid, row_eff, col_eff, &i, &j); +// +// // Calculate element in input matrix that is not on the boundary, +// if (i < row_eff && j < col_eff) { +// int intermediate_sum = 0; +// for (int k = 0; k < kernel_row; k++) { +// for (int l = 0; l < kernel_col; l++) { +// int index = index_to_row_major(i + k, j + l, row, col); +// int kernel_index = index_to_row_major(k, l, kernel_row, kernel_col); +// intermediate_sum += arr_mat_rm[index] * kernel_rm[kernel_index]; +// } +// } +// d_out_mat[index_to_row_major(i, j, row_eff, col_eff)] = intermediate_sum; +// } +// } + // main() driver @@ -249,10 +378,62 @@ int main() { Matrix* arr_mat = (Matrix*)malloc(num_targets * sizeof(Matrix)); int arr_range[num_targets]; - // read each target matrix, compute their convolution matrices, and compute their data ranges + // Calculate variable for cuda computing. + int a = (target_row-kernel_row+1) * (target_col-kernel_col+1); + int b = 1024; + int block_size = a/b + (a % b != 0); // ceil(a/b) + int threads_per_block = 1024; + int row_eff = target_row - kernel_row + 1; + int col_eff = target_col - kernel_col + 1; + + // Initialize host and device input and output matrixes. + int ** arr_mat_rm, **h_out_mat, ** d_out_mat, *kernel_rm; + // Allocate input matrix. + arr_mat_rm = (int**)malloc(sizeof(int*) * num_targets); + for (int i = 0; i < num_targets; i++) { + arr_mat_rm[i] = (int*)malloc(sizeof(int) * target_row * target_col); + } + // Allocate output matrix. + h_out_mat = (int**)malloc(sizeof(int*) * num_targets); + for (int i = 0; i < num_targets; i++) { + h_out_mat[i] = (int*)malloc(sizeof(int) * row_eff * col_eff); + } + // cudaMalloc((void**)&d_out_mat, sizeof(int*) * num_targets); + // for (int i = 0; i < num_targets; i++) { + // cudaMalloc(&h_out_mat[i], sizeof(int) * row_eff * col_eff); + // } + // cudaMemcpy(d_out_mat, h_out_mat, sizeof(int*) * num_targets, cudaMemcpyHostToDevice); + + d_out_mat = (int**)malloc(sizeof(int*) * num_targets); + for (int i = 0; i < num_targets; i++) { + d_out_mat[i] = (int*)malloc(sizeof(int) * row_eff * col_eff); + } + kernel_rm = (int*)malloc(sizeof(int) * kernel_col * kernel_row); + + + + // Store kernel in row major form. + kernel_rm = map_matrix(kernel.mat, kernel_row, kernel_col); + + // read each target matrix, and get the row major matrix from. for (int i = 0; i < num_targets; i++) { arr_mat[i] = input_matrix(target_row, target_col); - arr_mat[i] = convolution(&kernel, &arr_mat[i]); + arr_mat_rm[i] = map_matrix(arr_mat[i].mat, target_row, target_col); + // cuda_convolution<<<block_size, threads_per_block>>>(d_out_mat[i], arr_mat_rm[i], kernel_rm, target_row, target_col, kernel_row, kernel_col); + // cudaMemcpy(h_out_mat[i], d_out_mat[i], sizeof(int) * row_eff * col_eff, cudaMemcpyDeviceToHost); + cuda_convolution(d_out_mat[i], arr_mat_rm[i], kernel_rm, row_eff, col_eff, kernel_row, kernel_col); + arr_mat[i] = rm_to_matrix_object(d_out_mat[i], row_eff, col_eff); + } + + // // Free cuda memory + // for (int i = 0; i < num_targets; i++) { + // cudaFree(h_out_mat[i]); + // } + // cudaFree(d_out_mat); + + // For each target matrix, compute their convolution matrices, and compute their data ranges + for (int i = 0; i < num_targets; i++) { + // arr_mat[i] = convolution(&kernel, &arr_mat[i]); arr_range[i] = get_matrix_datarange(&arr_mat[i]); } -- GitLab