diff --git a/src/serial _real.c b/src/serial _real.c
new file mode 100644
index 0000000000000000000000000000000000000000..ab02e0f5a4eb458acf82d82df7410930d60ba64f
--- /dev/null
+++ b/src/serial _real.c	
@@ -0,0 +1,277 @@
+// serial.c
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <time.h>
+
+#define NMAX 100
+#define DATAMAX 1000
+#define DATAMIN -1000
+
+/* 
+ * Struct Matrix
+ *
+ * Matrix representation consists of matrix data 
+ * and effective dimensions 
+ * */
+typedef struct Matrix {
+	int mat[NMAX][NMAX];	// Matrix cells
+	int row_eff;			// Matrix effective row
+	int col_eff;			// Matrix effective column
+} Matrix;
+
+
+/* 
+ * Procedure init_matrix
+ * 
+ * Initializing newly allocated matrix
+ * Setting all data to 0 and effective dimensions according
+ * to nrow and ncol 
+ * */
+void init_matrix(Matrix *m, int nrow, int ncol) {
+	m->row_eff = nrow;
+	m->col_eff = ncol;
+
+	for (int i = 0; i < m->row_eff; i++) {
+		for (int j = 0; j < m->col_eff; j++) {
+			m->mat[i][j] = 0;
+		}
+	}
+}
+
+
+/* 
+ * Function input_matrix
+ *
+ * Returns a matrix with values from stdin input
+ * */
+Matrix input_matrix(int nrow, int ncol) {
+	Matrix input;
+	init_matrix(&input, nrow, ncol);
+
+	for (int i = 0; i < nrow; i++) {
+		for (int j = 0; j < ncol; j++) {
+			scanf("%d", &input.mat[i][j]);
+		}
+	}
+
+	return input;
+}
+
+
+/* 
+ * Procedure print_matrix
+ * 
+ * Print matrix data
+ * */
+void print_matrix(Matrix *m) {
+	for (int i = 0; i < m->row_eff; i++) {
+		for (int j = 0; j < m->col_eff; j++) {
+			printf("%d ", m->mat[i][j]);
+		}
+		printf("\n");
+	}
+}
+
+
+/* 
+ * Function get_matrix_datarange
+ *
+ * Returns the range between maximum and minimum
+ * element of a matrix
+ * */
+int get_matrix_datarange(Matrix *m) {
+	int max = DATAMIN;
+	int min = DATAMAX;
+	for (int i = 0; i < m->row_eff; i++) {
+		for (int j = 0; j < m->col_eff; j++) {
+			int el = m->mat[i][j];
+			if (el > max) max = el;
+			if (el < min) min = el;
+		}
+	}
+
+	return max - min;
+}
+
+
+/*
+ * Function supression_op
+ *
+ * Returns the sum of intermediate value of special multiplication
+ * operation where kernel[0][0] corresponds to target[row][col]
+ * */
+int supression_op(Matrix *kernel, Matrix *target, int row, int col) {
+	int intermediate_sum = 0;
+	for (int i = 0; i < kernel->row_eff; i++) {
+		for (int j = 0; j < kernel->col_eff; j++) {
+			intermediate_sum += kernel->mat[i][j] * target->mat[row + i][col + j];
+		}
+	}
+
+	return intermediate_sum;
+}
+
+
+/* 
+ * Function convolution
+ *
+ * Return the output matrix of convolution operation
+ * between kernel and target
+ * */
+Matrix convolution(Matrix *kernel, Matrix *target) {
+	Matrix out;
+	int out_row_eff = target->row_eff - kernel->row_eff + 1;
+	int out_col_eff = target->col_eff - kernel->col_eff + 1;
+	
+	init_matrix(&out, out_row_eff, out_col_eff);
+
+	for (int i = 0; i < out.row_eff; i++) {
+		for (int j = 0; j < out.col_eff; j++) {
+			out.mat[i][j] = supression_op(kernel, target, i, j);
+		}
+	}
+
+	return out;
+}
+
+
+/*
+ * Procedure merge_array
+ *
+ * Merges two subarrays of n with n[left..mid] and n[mid+1..right]
+ * to n itself, with n now ordered ascendingly
+ * */
+void merge_array(int *n, int left, int mid, int right) {
+	int n_left = mid - left + 1;
+	int n_right = right - mid;
+	int iter_left = 0, iter_right = 0, iter_merged = left;
+	int arr_left[n_left], arr_right[n_right];
+
+	for (int i = 0; i < n_left; i++) {
+		arr_left[i] = n[i + left];
+	}
+
+	for (int i = 0; i < n_right; i++) {
+		arr_right[i] = n[i + mid + 1];
+	}
+
+	while (iter_left < n_left && iter_right < n_right) {
+		if (arr_left[iter_left] <= arr_right[iter_right]) {
+			n[iter_merged] = arr_left[iter_left++];
+		} else {
+			n[iter_merged] = arr_right[iter_right++];
+		}
+		iter_merged++;
+	}
+
+	while (iter_left < n_left)  {
+		n[iter_merged++] = arr_left[iter_left++];
+	}
+	while (iter_right < n_right) {
+		n[iter_merged++] = arr_right[iter_right++];
+	} 
+}
+
+
+/* 
+ * Procedure merge_sort
+ *
+ * Sorts array n with merge sort algorithm
+ * */
+void merge_sort(int *n, int left, int right) {
+	if (left < right) {
+		int mid = left + (right - left) / 2;
+
+		merge_sort(n, left, mid);
+		merge_sort(n, mid + 1, right);
+
+		merge_array(n, left, mid, right);
+	}	
+}
+ 
+
+/* 
+ * Procedure print_array
+ *
+ * Prints all elements of array n of size to stdout
+ * */
+void print_array(int *n, int size) {
+	for (int i = 0; i < size; i++ ) printf("%d ", n[i]);
+	printf("\n");
+}
+
+
+/* 
+ * Function get_median
+ *
+ * Returns median of array n of length
+ * */
+int get_median(int *n, int length) {
+	int mid = length / 2;
+	if (length & 1) return n[mid];
+
+	return (n[mid - 1] + n[mid]) / 2;
+}
+
+
+/* 
+ * Function get_floored_mean
+ *
+ * Returns floored mean from an array of integers
+ * */
+long get_floored_mean(int *n, int length) {
+	long sum = 0;
+	for (int i = 0; i < length; i++) {
+		sum += n[i];
+	}
+
+	return sum / length;
+}
+
+
+
+// main() driver
+int main() {
+	// Time.
+	clock_t t;
+    t = clock();
+
+	int kernel_row, kernel_col, target_row, target_col, num_targets;
+	
+	// reads kernel's row and column and initalize kernel matrix from input
+	scanf("%d %d", &kernel_row, &kernel_col);
+	Matrix kernel = input_matrix(kernel_row, kernel_col);
+	
+	// reads number of target matrices and their dimensions.
+	// initialize array of matrices and array of data ranges (int)
+	scanf("%d %d %d", &num_targets, &target_row, &target_col);
+	Matrix* arr_mat = (Matrix*)malloc(num_targets * sizeof(Matrix));
+	int arr_range[num_targets];
+	
+	// read each target matrix, compute their convolution matrices, and compute their data ranges
+	for (int i = 0; i < num_targets; i++) {
+		arr_mat[i] = input_matrix(target_row, target_col);
+		arr_mat[i] = convolution(&kernel, &arr_mat[i]);
+		arr_range[i] = get_matrix_datarange(&arr_mat[i]); 
+	}
+
+	// sort the data range array
+	merge_sort(arr_range, 0, num_targets - 1);
+	
+	int median = get_median(arr_range, num_targets);	
+	int floored_mean = get_floored_mean(arr_range, num_targets); 
+
+	// print the min, max, median, and floored mean of data range array
+	printf("%d\n%d\n%d\n%d\n", 
+			arr_range[0], 
+			arr_range[num_targets - 1], 
+			median, 
+			floored_mean);
+
+	// Print execution time in seconds.
+	t = clock() - t;
+	printf("\nRuntime: %f s\n", ((float)t) / CLOCKS_PER_SEC);
+	
+	return 0;
+}
diff --git a/src/serial.c b/src/serial.c
index ab02e0f5a4eb458acf82d82df7410930d60ba64f..f4a69bd39472d4c3c9519557833c2a6e7981e22b 100644
--- a/src/serial.c
+++ b/src/serial.c
@@ -3,6 +3,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <time.h>
+#include <math.h>
 
 #define NMAX 100
 #define DATAMAX 1000
@@ -229,6 +230,134 @@ long get_floored_mean(int *n, int length) {
 	return sum / length;
 }
 
+/**
+ * Function index_to_row_major 
+ * 
+ * Returns the index of a matrix element in row-major order 
+ */
+int index_to_row_major(int row, int col, int row_eff, int col_eff) {
+	return row * col_eff + col;
+}
+
+// __device__ int d_index_to_row_major(int row, int col, int row_eff, int col_eff) {
+// 		return row * col_eff + col;
+// }
+
+/**
+ * Function row_major_to_index
+ * 
+ * Returns the row and column of a matrix element in row-major order
+ */
+void row_major_to_index(int index, int row_eff, int col_eff, int *row, int *col) {
+	*row = index / col_eff;
+	*col = index % col_eff;
+}
+
+// __device__ void d_row_major_to_index(int index, int row_eff, int col_eff, int *row, int *col) {
+// 		*row = index / col_eff;
+// 		*col = index % col_eff;
+// }
+
+/**
+ * Function map_matrix
+ * 
+ * Returns a row major matrix of the input matrix.
+ **/
+int* map_matrix(int mat[][100], int row, int col) {
+	int* map = (int*) malloc(sizeof(int) * row * col);
+	for (int i = 0; i < row; i++) {
+		for (int j = 0; j < col; j++) {
+			map[index_to_row_major(i, j, row, col)] = mat[i][j];
+		}
+	}
+	return map;
+}
+
+/**
+ * Function reverse_map_matrix
+ * 
+ * Returns a matrix of the input row major matrix.
+ */
+int** reverse_map_matrix(int* map, int row, int col) {
+	int** mat = (int**) malloc(sizeof(int*) * row);
+	for (int i = 0; i < row; i++) {
+		mat[i] = (int*) malloc(sizeof(int) * col);
+		for (int j = 0; j < col; j++) {
+			mat[i][j] = map[index_to_row_major(i, j, row, col)];
+		}
+	}
+	return mat;
+}
+
+/**
+ * Function rm_to_matrix_object
+ * 
+ * Return Matrix struct of row major matrix
+ */
+Matrix rm_to_matrix_object(int* map, int row, int col) {
+	Matrix mat;
+	init_matrix(&mat, row, col);
+	for (int i = 0; i < row; i++) {
+		for (int j = 0; j < col; j++) {
+			mat.mat[i][j] = map[index_to_row_major(i, j, row, col)];
+		}
+	}
+	return mat;
+}
+
+/**
+ * Function cuda_convolution
+ * 
+ * Returns a matrix of the convolution of the input matrix with the kernel
+ */
+void cuda_convolution(int* d_out_mat, int* arr_mat_rm, int* kernel_rm, int row_eff, int col_eff, int kernel_row, int kernel_col) {
+	// Calculate real row and column of input matrix.
+	int row = row_eff + kernel_row - 1;
+	int col = col_eff + kernel_col - 1;
+	
+	// For each element in input matrix that is not on the boundary,
+	for (int i = 0; i < row_eff; i++) {
+		for (int j = 0; j < col_eff; j++) {
+			// Convolution of the element with the kernel.
+			// Calculate the sum of the kernel and the input matrix.
+			int intermediate_sum = 0;
+			for (int k = 0; k < kernel_row; k++) {
+				for (int l = 0; l < kernel_col; l++) {
+					int index = index_to_row_major(i + k, j + l, row, col);
+					int kernel_index = index_to_row_major(k, l, kernel_row, kernel_col);
+					intermediate_sum += arr_mat_rm[index] * kernel_rm[kernel_index];
+				}
+			}
+			// Store the sum in the output matrix.
+			d_out_mat[index_to_row_major(i, j, row_eff, col_eff)] = intermediate_sum;
+		}
+	}
+}
+
+// __global__ void d_cuda_convolution(int* d_out_mat, int* arr_mat_rm, int* kernel_rm, int row_eff, int col_eff, int kernel_row, int kernel_col) {
+//  // Calculate real row and column of input matrix.
+// 	int row = row_eff + kernel_row - 1;
+// 	int col = col_eff + kernel_col - 1;
+// 
+//  // Get i, and j from threadIdx
+//  int tid = blockIdx.x * blockDim.x + threadIdx.x;
+//  int i, j;
+//  d_row_major_to_index(tid, row_eff, col_eff, &i, &j);
+// 
+//  // Calculate element in input matrix that is not on the boundary,
+// 	if (i < row_eff && j < col_eff) {
+// 		int intermediate_sum = 0;
+// 		for (int k = 0; k < kernel_row; k++) {
+// 			for (int l = 0; l < kernel_col; l++) {
+// 				int index = index_to_row_major(i + k, j + l, row, col);
+// 				int kernel_index = index_to_row_major(k, l, kernel_row, kernel_col);
+// 				intermediate_sum += arr_mat_rm[index] * kernel_rm[kernel_index];
+// 			}
+// 		}
+// 		d_out_mat[index_to_row_major(i, j, row_eff, col_eff)] = intermediate_sum;
+// 	}
+// }
+
 
 
 // main() driver
@@ -249,10 +378,62 @@ int main() {
 	Matrix* arr_mat = (Matrix*)malloc(num_targets * sizeof(Matrix));
 	int arr_range[num_targets];
 	
-	// read each target matrix, compute their convolution matrices, and compute their data ranges
+	// Calculate variable for cuda computing.
+	int a = (target_row-kernel_row+1) * (target_col-kernel_col+1);
+	int b = 1024;
+	int block_size = a/b + (a % b != 0); // ceil(a/b)
+	int threads_per_block = 1024;
+	int row_eff = target_row - kernel_row + 1;
+	int col_eff = target_col - kernel_col + 1;
+
+	// Initialize host and device input and output matrixes.
+	int ** arr_mat_rm, **h_out_mat, ** d_out_mat, *kernel_rm;
+	// Allocate input matrix.
+	arr_mat_rm = (int**)malloc(sizeof(int*) * num_targets);
+	for (int i = 0; i < num_targets; i++) {
+		arr_mat_rm[i] = (int*)malloc(sizeof(int) * target_row * target_col);
+	}
+	// Allocate output matrix.
+	h_out_mat = (int**)malloc(sizeof(int*) * num_targets);
+	for (int i = 0; i < num_targets; i++) {
+		h_out_mat[i] = (int*)malloc(sizeof(int) * row_eff * col_eff);
+	}
+	// cudaMalloc((void**)&d_out_mat, sizeof(int*) * num_targets);
+	//  for (int i = 0; i < num_targets; i++) {
+	// 		cudaMalloc(&h_out_mat[i], sizeof(int) * row_eff * col_eff);
+	// 	}
+	// cudaMemcpy(d_out_mat, h_out_mat, sizeof(int*) * num_targets, cudaMemcpyHostToDevice);
+
+	d_out_mat = (int**)malloc(sizeof(int*) * num_targets);
+	for (int i = 0; i < num_targets; i++) {
+		d_out_mat[i] = (int*)malloc(sizeof(int) * row_eff * col_eff);
+	}
+	kernel_rm = (int*)malloc(sizeof(int) * kernel_col * kernel_row);
+	
+
+
+	// Store kernel in row major form.
+	kernel_rm = map_matrix(kernel.mat, kernel_row, kernel_col);
+
+	// read each target matrix, and get the row major matrix from.
 	for (int i = 0; i < num_targets; i++) {
 		arr_mat[i] = input_matrix(target_row, target_col);
-		arr_mat[i] = convolution(&kernel, &arr_mat[i]);
+		arr_mat_rm[i] = map_matrix(arr_mat[i].mat, target_row, target_col);
+		// cuda_convolution<<<block_size, threads_per_block>>>(d_out_mat[i], arr_mat_rm[i], kernel_rm, target_row, target_col, kernel_row, kernel_col);
+		// cudaMemcpy(h_out_mat[i], d_out_mat[i], sizeof(int) * row_eff * col_eff, cudaMemcpyDeviceToHost); 
+		cuda_convolution(d_out_mat[i], arr_mat_rm[i], kernel_rm, row_eff, col_eff, kernel_row, kernel_col);
+		arr_mat[i] = rm_to_matrix_object(d_out_mat[i], row_eff, col_eff);
+	}
+
+	// // Free cuda memory
+	// for (int i = 0; i < num_targets; i++) {
+	// 	cudaFree(h_out_mat[i]);
+	// }
+	// cudaFree(d_out_mat);
+
+	// For each target matrix, compute their convolution matrices, and compute their data ranges
+	for (int i = 0; i < num_targets; i++) {
+		// arr_mat[i] = convolution(&kernel, &arr_mat[i]);
 		arr_range[i] = get_matrix_datarange(&arr_mat[i]); 
 	}