From 8082e9acf245a85b144371dfb059348b152e6f22 Mon Sep 17 00:00:00 2001 From: azharfatrr <13519020@std.stei.itb.ac.id> Date: Thu, 17 Mar 2022 23:06:35 +0700 Subject: [PATCH] fix: get datarange --- makefile | 2 +- result/K01-03-TC1_parallel.txt | 2 +- result/K01-03-TC1_parallel_collab.txt | 2 +- result/K01-03-TC1_serial.txt | 3 +- result/K01-03-TC2_parallel.txt | 2 +- result/K01-03-TC2_parallel_collab.txt | 2 +- result/K01-03-TC2_serial.txt | 2 +- result/K01-03-TC3_parallel.txt | 2 +- result/K01-03-TC3_parallel_collab.txt | 2 +- result/K01-03-TC3_serial.txt | 2 +- result/K01-03-TC4_parallel.txt | 2 +- result/K01-03-TC4_parallel_collab.txt | 2 +- result/K01-03-TC4_serial.txt | 3 +- src/parallel_collab.cu | 61 ++- src/serial.c | 266 +------------ src/serial_real.c | 277 ------------- src/serial_test.c | 539 ++++++++++++++++++++++++++ 17 files changed, 608 insertions(+), 563 deletions(-) delete mode 100644 src/serial_real.c create mode 100644 src/serial_test.c diff --git a/makefile b/makefile index 6f361dd..ccac332 100644 --- a/makefile +++ b/makefile @@ -1,4 +1,4 @@ -SOURCE_SERIAL=./src/serial_real.c +SOURCE_SERIAL=./src/serial.c SOURCE_PARALLEL=./src/parallel.cu SOURCE_TEST=./src/test.c SOURCE_PARALLEL_COLLAB=./src/parallel_collab.cu diff --git a/result/K01-03-TC1_parallel.txt b/result/K01-03-TC1_parallel.txt index 3c886f1..04a2a8a 100644 --- a/result/K01-03-TC1_parallel.txt +++ b/result/K01-03-TC1_parallel.txt @@ -3,4 +3,4 @@ 10114197 10323010 -Runtime: 0.162468 s +Runtime: 0.155827 s diff --git a/result/K01-03-TC1_parallel_collab.txt b/result/K01-03-TC1_parallel_collab.txt index 2dca374..f91c914 100644 --- a/result/K01-03-TC1_parallel_collab.txt +++ b/result/K01-03-TC1_parallel_collab.txt @@ -3,4 +3,4 @@ 10114197 10323010 -Runtime: 0.163408 s +Runtime: 0.144829 s diff --git a/result/K01-03-TC1_serial.txt b/result/K01-03-TC1_serial.txt index d747dfe..989f60d 100644 --- a/result/K01-03-TC1_serial.txt +++ b/result/K01-03-TC1_serial.txt @@ -1,7 +1,6 @@ -yey 8539213 11916317 10114197 10323010 -Runtime: 0.015577 s +Runtime: 0.014589 s diff --git a/result/K01-03-TC2_parallel.txt b/result/K01-03-TC2_parallel.txt index af4e4b0..b594a37 100644 --- a/result/K01-03-TC2_parallel.txt +++ b/result/K01-03-TC2_parallel.txt @@ -3,4 +3,4 @@ 37739803 38222937 -Runtime: 0.857004 s +Runtime: 0.833981 s diff --git a/result/K01-03-TC2_parallel_collab.txt b/result/K01-03-TC2_parallel_collab.txt index 760c0b3..aafe92c 100644 --- a/result/K01-03-TC2_parallel_collab.txt +++ b/result/K01-03-TC2_parallel_collab.txt @@ -3,4 +3,4 @@ 37739803 38222937 -Runtime: 0.446493 s +Runtime: 0.422364 s diff --git a/result/K01-03-TC2_serial.txt b/result/K01-03-TC2_serial.txt index b07814f..d21e02c 100644 --- a/result/K01-03-TC2_serial.txt +++ b/result/K01-03-TC2_serial.txt @@ -3,4 +3,4 @@ 37739803 38222937 -Runtime: 0.715588 s +Runtime: 0.689801 s diff --git a/result/K01-03-TC3_parallel.txt b/result/K01-03-TC3_parallel.txt index 67a2084..bff74c6 100644 --- a/result/K01-03-TC3_parallel.txt +++ b/result/K01-03-TC3_parallel.txt @@ -3,4 +3,4 @@ 23198319 23380111 -Runtime: 0.984349 s +Runtime: 0.988793 s diff --git a/result/K01-03-TC3_parallel_collab.txt b/result/K01-03-TC3_parallel_collab.txt index ee9fbc6..98ed976 100644 --- a/result/K01-03-TC3_parallel_collab.txt +++ b/result/K01-03-TC3_parallel_collab.txt @@ -3,4 +3,4 @@ 23198319 23380111 -Runtime: 0.722501 s +Runtime: 0.644663 s diff --git a/result/K01-03-TC3_serial.txt b/result/K01-03-TC3_serial.txt index 7232575..7cb8cc0 100644 --- a/result/K01-03-TC3_serial.txt +++ b/result/K01-03-TC3_serial.txt @@ -3,4 +3,4 @@ 23198319 23380111 -Runtime: 0.817598 s +Runtime: 0.815450 s diff --git a/result/K01-03-TC4_parallel.txt b/result/K01-03-TC4_parallel.txt index 3fa6f6a..b1f42bf 100644 --- a/result/K01-03-TC4_parallel.txt +++ b/result/K01-03-TC4_parallel.txt @@ -3,4 +3,4 @@ 51451884 51774352 -Runtime: 9.561980 s +Runtime: 9.862558 s diff --git a/result/K01-03-TC4_parallel_collab.txt b/result/K01-03-TC4_parallel_collab.txt index b6c4758..af651ca 100644 --- a/result/K01-03-TC4_parallel_collab.txt +++ b/result/K01-03-TC4_parallel_collab.txt @@ -3,4 +3,4 @@ 51451884 51774352 -Runtime: 4.290069 s +Runtime: 4.018500 s diff --git a/result/K01-03-TC4_serial.txt b/result/K01-03-TC4_serial.txt index 0f63ac9..789cfe3 100644 --- a/result/K01-03-TC4_serial.txt +++ b/result/K01-03-TC4_serial.txt @@ -1,7 +1,6 @@ -yey 41250811 71841136 51451884 51774352 -Runtime: 8.956075 s +Runtime: 8.795971 s diff --git a/src/parallel_collab.cu b/src/parallel_collab.cu index 5d64706..ffb6074 100644 --- a/src/parallel_collab.cu +++ b/src/parallel_collab.cu @@ -513,6 +513,39 @@ __global__ void d_cuda_convolution(int* d_out_mat, int* arr_mat_rm, int* kernel_ } } +/* + * Function d_get_matrix_datarange + * Set range between maximum and minimum + * for every matrix in out_mat to d_arr_range + * */ +__global__ void d_get_matrix_datarange(int* out_mat, int* d_arr_range, int row_eff, int col_eff) { + // Determine current matrix from block; + int curr_mat = blockIdx.y; + // Calculate padding output matrix and arr_range matrix. + int pad = curr_mat * row_eff * col_eff; + int pad_arr_range = curr_mat; + + // Get i, and j from threadIdx + int tid = blockIdx.x * blockDim.x + threadIdx.x; + int i, j; + d_row_major_to_index(tid, row_eff, col_eff, &i, &j); + // Get datarange in every output matrix + if (i < row_eff && j < col_eff) { + int max = DATAMIN; + int min = DATAMAX; + for (int k = 0; k < row_eff; k++) { + for (int l = 0; l < col_eff; l++) { + int index = d_index_to_row_major(i + k, j + l, row_eff, col_eff) + pad; + + int el = out_mat[index]; + if (el > max) max = el; + if (el < min) min = el; + } + } + + d_arr_range[d_index_to_row_major(i, j, row_eff, col_eff) + pad_arr_range] = max-min; + } +} // main() driver int main() { @@ -530,7 +563,7 @@ int main() { // initialize array of matrices and array of data ranges (int) scanf("%d %d %d", &num_targets, &target_row, &target_col); Matrix* arr_mat = (Matrix*)malloc(num_targets * sizeof(Matrix)); - int arr_range[num_targets]; + // int arr_range[num_targets]; // Calculate variable for cuda computing. int a = (target_row-kernel_row+1) * (target_col-kernel_col+1); @@ -544,8 +577,8 @@ int main() { // Allocate variable. // rm means row-major. It's indicate matrix are in row-major order. // Variable declaration. - int * arr_mat_rm=0, * d_arr_mat_rm=0, *out_mat_rm=0, *d_out_mat_rm=0, *kernel_rm=0, *d_kernel_rm=0; - int size_arr_mat, size_out_mat, size_kernel; + int * arr_mat_rm=0, * d_arr_mat_rm=0, *out_mat_rm=0, *d_out_mat_rm=0, *kernel_rm=0, *d_kernel_rm=0, *arr_range=0, *d_arr_range=0; + int size_arr_mat, size_out_mat, size_kernel, size_arr_range; cudaError err; // Allocate input matrix in device and host. @@ -610,11 +643,25 @@ int main() { // for (int i = 0; i < num_targets; i++){ // cuda_convolution(out_mat_rm, arr_mat_rm, kernel_rm, row_eff, col_eff, kernel_row, kernel_col, i); // } - arr_mat = rm_to_list_matrix_object(out_mat_rm, num_targets, row_eff*col_eff, row_eff, col_eff); + // arr_mat = rm_to_list_matrix_object(out_mat_rm, num_targets, row_eff*col_eff, row_eff, col_eff); + + // Allocate arr_range matrix in device and host. + size_arr_range = num_targets; + arr_range = (int*)malloc(sizeof(int) * size_arr_range); + cudaMalloc((void **)&d_arr_range, sizeof(int) * size_arr_range); + if (arr_range == 0 | d_arr_range == 0) { + printf("Error: Memory allocation failed for arr_range.\n"); + return 1; + } + cudaMemset(d_arr_range, 0, sizeof(int) * size_arr_range); - // For each target matrix, and compute their data ranges - for (int i = 0; i < num_targets; i++) { - arr_range[i] = get_matrix_datarange(&arr_mat[i]); + grid.x = 1; + grid.y = num_targets; + block.x = 1; + d_get_matrix_datarange<<<grid, block>>>(d_out_mat_rm, d_arr_range, row_eff, col_eff); + err = cudaMemcpy(arr_range, d_arr_range, sizeof(int) * size_arr_range, cudaMemcpyDeviceToHost); + if (err != cudaSuccess) { + printf("Error copy device to host 2: %s\n", cudaGetErrorString(err)); } // sort the data range array diff --git a/src/serial.c b/src/serial.c index ed2febe..ab02e0f 100644 --- a/src/serial.c +++ b/src/serial.c @@ -3,7 +3,6 @@ #include <stdio.h> #include <stdlib.h> #include <time.h> -#include <math.h> #define NMAX 100 #define DATAMAX 1000 @@ -230,202 +229,6 @@ long get_floored_mean(int *n, int length) { return sum / length; } -/** - * Function index_to_row_major - * - * Returns the index of a matrix element in row-major order - */ -int index_to_row_major(int row, int col, int row_eff, int col_eff) { - return row * col_eff + col; -} - -// __device__ int d_index_to_row_major(int row, int col, int row_eff, int col_eff) { -// return row * col_eff + col; -// } - -/** - * Function row_major_to_index - * - * Returns the row and column of a matrix element in row-major order - */ -void row_major_to_index(int index, int row_eff, int col_eff, int *row, int *col) { - *row = index / col_eff; - *col = index % col_eff; -} - -// __device__ void d_row_major_to_index(int index, int row_eff, int col_eff, int *row, int *col) { -// *row = index / col_eff; -// *col = index % col_eff; -// } - -/** - * Function map_matrix - * - * Returns a row major matrix of the input matrix. - **/ -int* map_matrix(int mat[][100], int row, int col) { - int* map = (int*) malloc(sizeof(int) * row * col); - for (int i = 0; i < row; i++) { - for (int j = 0; j < col; j++) { - map[index_to_row_major(i, j, row, col)] = mat[i][j]; - } - } - return map; -} - -/* - * Function map_matrix_extended - * - * Returns a row major matrix of the input matrix. - **/ -int* map_matrix_extended(int** mat, int row, int col) { - int* map = (int*) malloc(sizeof(int) * row * col); - for (int i = 0; i < row; i++) { - for (int j = 0; j < col; j++) { - map[index_to_row_major(i, j, row, col)] = mat[i][j]; - } - } - return map; -} - - -/** - * Function reverse_map_matrix - * - * Returns a matrix of the input row major matrix. - */ -int** reverse_map_matrix(int* map, int row, int col) { - int** mat = (int**) malloc(sizeof(int*) * row); - for (int i = 0; i < row; i++) { - mat[i] = (int*) malloc(sizeof(int) * col); - for (int j = 0; j < col; j++) { - mat[i][j] = map[index_to_row_major(i, j, row, col)]; - } - } - return mat; -} - -/** - * Function rm_to_matrix_object - * - * Return Matrix struct of row major matrix - */ -Matrix rm_to_matrix_object(int* map, int row, int col) { - Matrix mat; - init_matrix(&mat, row, col); - for (int i = 0; i < row; i++) { - for (int j = 0; j < col; j++) { - mat.mat[i][j] = map[index_to_row_major(i, j, row, col)]; - } - } - return mat; -} - -/** - * Function rm_to_list_matrix_object - * - * Return List of Matrix Struct of row major matrix - */ -Matrix* rm_to_list_matrix_object(int* map, int row, int col, int row_inner, int col_inner) { - Matrix* mat = (Matrix*) malloc(sizeof(Matrix) * row); - for (int i = 0; i < row; i++) { - init_matrix(&mat[i], row_inner, col_inner); - int pad = i * col; - for (int j = 0; j < row_inner; j++) { - for (int k = 0; k < col_inner; k++) { - int index = index_to_row_major(j, k, row_inner, col_inner) + pad; - mat[i].mat[j][k] = map[index]; - } - } - } - return mat; -} -/** - * Function list_matrix_object_to_rm - * - * Return row major matrix of list of Matrix struct - */ -int* list_matrix_object_to_rm(Matrix* mat, int num_matrix, int row_inner, int col_inner) { - int* map = (int*) malloc(sizeof(int) * num_matrix * row_inner * col_inner); - for (int i = 0; i < num_matrix; i++) { - int pad = i * row_inner * col_inner; - for (int j = 0; j < row_inner; j++) { - for (int k = 0; k < col_inner; k++) { - int index = index_to_row_major(j, k, row_inner, col_inner) + pad; - map[index] = mat[i].mat[j][k]; - } - } - } - - return map; -} - -/** - * Function cuda_convolution - * - * Returns a matrix of the convolution of the input matrix with the kernel - */ -void cuda_convolution(int* out_mat_rm, int* arr_mat_rm, int* kernel_rm, int row_eff, int col_eff, int kernel_row, int kernel_col, int curr_mat) { - // Calculate real row and column of input matrix. - int row = row_eff + kernel_row - 1; - int col = col_eff + kernel_col - 1; - - // Calculate padding target and output matrix. - int pad = curr_mat * row * col; - int pad_out = curr_mat * row_eff * col_eff; - - // For each element in input matrix that is not on the boundary, - for (int i = 0 ; i < row_eff; i++) { - for (int j = 0; j < col_eff; j++) { - // Convolution of the element with the kernel. - // Calculate the sum of the kernel and the input matrix. - int intermediate_sum = 0; - for (int k = 0; k < kernel_row; k++) { - for (int l = 0; l < kernel_col; l++) { - int index = index_to_row_major(i + k, j + l, row, col) + pad; - int kernel_index = index_to_row_major(k, l, kernel_row, kernel_col); - intermediate_sum += arr_mat_rm[index] * kernel_rm[kernel_index]; - // Print all i,j,k,l - // printf("i:%d, j:%d, k:%d, l:%d\n", i, j, k, l); - - } - } - // Store the sum in the output matrix. - out_mat_rm[index_to_row_major(i, j, row_eff, col_eff) + pad_out ] = intermediate_sum; - } - } -} - -// __global__ void d_cuda_convolution(int* d_out_mat, int* arr_mat_rm, int* kernel_rm, int row_eff, int col_eff, int kernel_row, int kernel_col) { -// // Calculate real row and column of input matrix. -// int row = row_eff + kernel_row - 1; -// int col = col_eff + kernel_col - 1; -// -// // Determine current matrix from block; -// int curr_mat = blockIdx.y; -// -// // Calculate padding target and output matrix. -// int pad = curr_mat * row * col; -// int pad_out = curr_mat * row_eff * col_eff; -// -// // Get i, and j from threadIdx -// int tid = blockIdx.x * blockDim.x + threadIdx.x; -// int i, j; -// d_row_major_to_index(tid, row_eff, col_eff, &i, &j); -// -// // Calculate element in input matrix that is not on the boundary, -// if (i < row_eff && j < col_eff) { -// int intermediate_sum = 0; -// for (int k = 0; k < kernel_row; k++) { -// for (int l = 0; l < kernel_col; l++) { -// int index = d_index_to_row_major(i + k, j + l, row, col) + pad; -// int kernel_index = d_index_to_row_major(k, l, kernel_row, kernel_col); -// intermediate_sum += arr_mat_rm[index] * kernel_rm[kernel_index]; -// } -// } -// d_out_mat[d_index_to_row_major(i, j, row_eff, col_eff) + pad_out] = intermediate_sum; -// } -// } // main() driver @@ -446,75 +249,10 @@ int main() { Matrix* arr_mat = (Matrix*)malloc(num_targets * sizeof(Matrix)); int arr_range[num_targets]; - // Calculate variable for cuda computing. - int a = (target_row-kernel_row+1) * (target_col-kernel_col+1); - int b = 1024; - int block_size = a/b + (a % b != 0); // ceil(a/b) - int threads_per_block = 1024; - int row_eff = target_row - kernel_row + 1; - int col_eff = target_col - kernel_col + 1; - - - // Allocate variable. - // rm means row-major. It's indicate matrix are in row-major order. - // Variable declaration. - int * arr_mat_rm, * d_arr_mat_rm, *out_mat_rm, *d_out_mat_rm, *kernel_rm, *d_kernel_rm; - int size_arr_mat, size_out_mat, size_kernel; - // cudaError err; - - // Allocate input matrix in device and host. - size_arr_mat = num_targets * target_row * target_col; - arr_mat_rm = (int*)malloc(sizeof(int*) * size_arr_mat); - // cudaMalloc(&d_arr_mat_rm, sizeof(int*) * size_arr_mat); - - // Allocate output matrix in device and host. - size_out_mat = num_targets * row_eff * col_eff; - out_mat_rm = (int*)malloc(sizeof(int*) * size_out_mat); - // cudaMalloc(&d_out_mat_rm, sizeof(int*) * size_out_mat); - - // Allocate kernel matrix in host. - size_kernel = kernel_row * kernel_col; - kernel_rm = (int*)malloc(sizeof(int) * size_kernel); - // Store kernel in row major form and allocate kernel for device. - kernel_rm = map_matrix(kernel.mat, kernel_row, kernel_col); - // cudaMalloc(&d_kernel_rm, sizeof(int) * size_kernel); - // err = cudaMemcpy(d_kernel_rm, kernel_rm, sizeof(int) * size_kernel, cudaMemcpyHostToDevice); - // if (err != cudaSuccess) { - // printf("Error copy host to device: %s\n", cudaGetErrorString(err)); - // } - - - // Read each target matrix. + // read each target matrix, compute their convolution matrices, and compute their data ranges for (int i = 0; i < num_targets; i++) { arr_mat[i] = input_matrix(target_row, target_col); - } - // Store each target matrix in row major form and allocate target matrix for device. - arr_mat_rm = list_matrix_object_to_rm(arr_mat, num_targets, target_row, target_col); - // cudaMalloc(&d_arr_mat_rm, sizeof(int) * size_arr_mat); - // err = cudaMemcpy(d_arr_mat_rm, arr_mat_rm, sizeof(int) * size_arr_mat, cudaMemcpyHostToDevice); - // if (err != cudaSuccess) { - // printf("Error copy host to device: %s\n", cudaGetErrorString(err)); - // } - - // For each target matrix, compute their convolution matrices. - // dim3 grid, block; - // block.x = block_size; - // block.y = num_targets; - // grid.x = threads_per_block; - // d_cuda_convolution<<<grid, block>>>(d_out_mat_rm, d_arr_mat_rm, d_kernel_rm, row_eff, col_eff, kernel_row, kernel_col); - // cudaMemcpy(out_mat_rm, d_out_mat_rm, sizeof(int) * size_out_mat, cudaMemcpyDeviceToHost); - for (int i = 0; i < num_targets; i++){ - cuda_convolution(out_mat_rm, arr_mat_rm, kernel_rm, row_eff, col_eff, kernel_row, kernel_col, i); - } - arr_mat = rm_to_list_matrix_object(out_mat_rm, num_targets, row_eff*col_eff, row_eff, col_eff); - - // // Free cuda Memory. - // cudaFree(d_arr_mat_rm); - // cudaFree(d_out_mat_rm); - // cudaFree(d_kernel_rm); - - // For each target matrix, and compute their data ranges - for (int i = 0; i < num_targets; i++) { + arr_mat[i] = convolution(&kernel, &arr_mat[i]); arr_range[i] = get_matrix_datarange(&arr_mat[i]); } diff --git a/src/serial_real.c b/src/serial_real.c deleted file mode 100644 index 7a641e5..0000000 --- a/src/serial_real.c +++ /dev/null @@ -1,277 +0,0 @@ -// serial.c - -#include <stdio.h> -#include <stdlib.h> -#include <time.h> - -#define NMAX 100 -#define DATAMAX 1000 -#define DATAMIN -1000 - -/* - * Struct Matrix - * - * Matrix representation consists of matrix data - * and effective dimensions - * */ -typedef struct Matrix { - int mat[NMAX][NMAX]; // Matrix cells - int row_eff; // Matrix effective row - int col_eff; // Matrix effective column -} Matrix; - - -/* - * Procedure init_matrix - * - * Initializing newly allocated matrix - * Setting all data to 0 and effective dimensions according - * to nrow and ncol - * */ -void init_matrix(Matrix *m, int nrow, int ncol) { - m->row_eff = nrow; - m->col_eff = ncol; - - for (int i = 0; i < m->row_eff; i++) { - for (int j = 0; j < m->col_eff; j++) { - m->mat[i][j] = 0; - } - } -} - - -/* - * Function input_matrix - * - * Returns a matrix with values from stdin input - * */ -Matrix input_matrix(int nrow, int ncol) { - Matrix input; - init_matrix(&input, nrow, ncol); - - for (int i = 0; i < nrow; i++) { - for (int j = 0; j < ncol; j++) { - scanf("%d", &input.mat[i][j]); - } - } - - return input; -} - - -/* - * Procedure print_matrix - * - * Print matrix data - * */ -void print_matrix(Matrix *m) { - for (int i = 0; i < m->row_eff; i++) { - for (int j = 0; j < m->col_eff; j++) { - printf("%d ", m->mat[i][j]); - } - printf("\n"); - } -} - - -/* - * Function get_matrix_datarange - * - * Returns the range between maximum and minimum - * element of a matrix - * */ -int get_matrix_datarange(Matrix *m) { - int max = DATAMIN; - int min = DATAMAX; - for (int i = 0; i < m->row_eff; i++) { - for (int j = 0; j < m->col_eff; j++) { - int el = m->mat[i][j]; - if (el > max) max = el; - if (el < min) min = el; - } - } - - return max - min; -} - - -/* - * Function supression_op - * - * Returns the sum of intermediate value of special multiplication - * operation where kernel[0][0] corresponds to target[row][col] - * */ -int supression_op(Matrix *kernel, Matrix *target, int row, int col) { - int intermediate_sum = 0; - for (int i = 0; i < kernel->row_eff; i++) { - for (int j = 0; j < kernel->col_eff; j++) { - intermediate_sum += kernel->mat[i][j] * target->mat[row + i][col + j]; - } - } - - return intermediate_sum; -} - - -/* - * Function convolution - * - * Return the output matrix of convolution operation - * between kernel and target - * */ -Matrix convolution(Matrix *kernel, Matrix *target) { - Matrix out; - int out_row_eff = target->row_eff - kernel->row_eff + 1; - int out_col_eff = target->col_eff - kernel->col_eff + 1; - - init_matrix(&out, out_row_eff, out_col_eff); - - for (int i = 0; i < out.row_eff; i++) { - for (int j = 0; j < out.col_eff; j++) { - out.mat[i][j] = supression_op(kernel, target, i, j); - } - } - - return out; -} - - -/* - * Procedure merge_array - * - * Merges two subarrays of n with n[left..mid] and n[mid+1..right] - * to n itself, with n now ordered ascendingly - * */ -void merge_array(int *n, int left, int mid, int right) { - int n_left = mid - left + 1; - int n_right = right - mid; - int iter_left = 0, iter_right = 0, iter_merged = left; - int arr_left[n_left], arr_right[n_right]; - - for (int i = 0; i < n_left; i++) { - arr_left[i] = n[i + left]; - } - - for (int i = 0; i < n_right; i++) { - arr_right[i] = n[i + mid + 1]; - } - - while (iter_left < n_left && iter_right < n_right) { - if (arr_left[iter_left] <= arr_right[iter_right]) { - n[iter_merged] = arr_left[iter_left++]; - } else { - n[iter_merged] = arr_right[iter_right++]; - } - iter_merged++; - } - - while (iter_left < n_left) { - n[iter_merged++] = arr_left[iter_left++]; - } - while (iter_right < n_right) { - n[iter_merged++] = arr_right[iter_right++]; - } -} - - -/* - * Procedure merge_sort - * - * Sorts array n with merge sort algorithm - * */ -void merge_sort(int *n, int left, int right) { - if (left < right) { - int mid = left + (right - left) / 2; - - merge_sort(n, left, mid); - merge_sort(n, mid + 1, right); - - merge_array(n, left, mid, right); - } -} - - -/* - * Procedure print_array - * - * Prints all elements of array n of size to stdout - * */ -void print_array(int *n, int size) { - for (int i = 0; i < size; i++ ) printf("%d ", n[i]); - printf("\n"); -} - - -/* - * Function get_median - * - * Returns median of array n of length - * */ -int get_median(int *n, int length) { - int mid = length / 2; - if (length & 1) return n[mid]; - - return (n[mid - 1] + n[mid]) / 2; -} - - -/* - * Function get_floored_mean - * - * Returns floored mean from an array of integers - * */ -long get_floored_mean(int *n, int length) { - long sum = 0; - for (int i = 0; i < length; i++) { - sum += n[i]; - } - - return sum / length; -} - - - -// main() driver -int main() { - // Time. - clock_t t; - t = clock(); - - int kernel_row, kernel_col, target_row, target_col, num_targets; - - // reads kernel's row and column and initalize kernel matrix from input - scanf("%d %d", &kernel_row, &kernel_col); - Matrix kernel = input_matrix(kernel_row, kernel_col); - - // reads number of target matrices and their dimensions. - // initialize array of matrices and array of data ranges (int) - scanf("%d %d %d", &num_targets, &target_row, &target_col); - Matrix* arr_mat = (Matrix*)malloc(num_targets * sizeof(Matrix)); - int arr_range[num_targets]; - - // read each target matrix, compute their convolution matrices, and compute their data ranges - for (int i = 0; i < num_targets; i++) { - arr_mat[i] = input_matrix(target_row, target_col); - arr_mat[i] = convolution(&kernel, &arr_mat[i]); - arr_range[i] = get_matrix_datarange(&arr_mat[i]); - } - - // sort the data range array - merge_sort(arr_range, 0, num_targets - 1); - - int median = get_median(arr_range, num_targets); - int floored_mean = get_floored_mean(arr_range, num_targets); - - // print the min, max, median, and floored mean of data range array - printf("%d\n%d\n%d\n%d\n", - arr_range[0], - arr_range[num_targets - 1], - median, - floored_mean); - - // Print execution time in seconds. - t = clock() - t; - printf("\nRuntime: %f s\n", ((float)t) / CLOCKS_PER_SEC); - - return 0; -} diff --git a/src/serial_test.c b/src/serial_test.c new file mode 100644 index 0000000..ed2febe --- /dev/null +++ b/src/serial_test.c @@ -0,0 +1,539 @@ +// serial.c + +#include <stdio.h> +#include <stdlib.h> +#include <time.h> +#include <math.h> + +#define NMAX 100 +#define DATAMAX 1000 +#define DATAMIN -1000 + +/* + * Struct Matrix + * + * Matrix representation consists of matrix data + * and effective dimensions + * */ +typedef struct Matrix { + int mat[NMAX][NMAX]; // Matrix cells + int row_eff; // Matrix effective row + int col_eff; // Matrix effective column +} Matrix; + + +/* + * Procedure init_matrix + * + * Initializing newly allocated matrix + * Setting all data to 0 and effective dimensions according + * to nrow and ncol + * */ +void init_matrix(Matrix *m, int nrow, int ncol) { + m->row_eff = nrow; + m->col_eff = ncol; + + for (int i = 0; i < m->row_eff; i++) { + for (int j = 0; j < m->col_eff; j++) { + m->mat[i][j] = 0; + } + } +} + + +/* + * Function input_matrix + * + * Returns a matrix with values from stdin input + * */ +Matrix input_matrix(int nrow, int ncol) { + Matrix input; + init_matrix(&input, nrow, ncol); + + for (int i = 0; i < nrow; i++) { + for (int j = 0; j < ncol; j++) { + scanf("%d", &input.mat[i][j]); + } + } + + return input; +} + + +/* + * Procedure print_matrix + * + * Print matrix data + * */ +void print_matrix(Matrix *m) { + for (int i = 0; i < m->row_eff; i++) { + for (int j = 0; j < m->col_eff; j++) { + printf("%d ", m->mat[i][j]); + } + printf("\n"); + } +} + + +/* + * Function get_matrix_datarange + * + * Returns the range between maximum and minimum + * element of a matrix + * */ +int get_matrix_datarange(Matrix *m) { + int max = DATAMIN; + int min = DATAMAX; + for (int i = 0; i < m->row_eff; i++) { + for (int j = 0; j < m->col_eff; j++) { + int el = m->mat[i][j]; + if (el > max) max = el; + if (el < min) min = el; + } + } + + return max - min; +} + + +/* + * Function supression_op + * + * Returns the sum of intermediate value of special multiplication + * operation where kernel[0][0] corresponds to target[row][col] + * */ +int supression_op(Matrix *kernel, Matrix *target, int row, int col) { + int intermediate_sum = 0; + for (int i = 0; i < kernel->row_eff; i++) { + for (int j = 0; j < kernel->col_eff; j++) { + intermediate_sum += kernel->mat[i][j] * target->mat[row + i][col + j]; + } + } + + return intermediate_sum; +} + + +/* + * Function convolution + * + * Return the output matrix of convolution operation + * between kernel and target + * */ +Matrix convolution(Matrix *kernel, Matrix *target) { + Matrix out; + int out_row_eff = target->row_eff - kernel->row_eff + 1; + int out_col_eff = target->col_eff - kernel->col_eff + 1; + + init_matrix(&out, out_row_eff, out_col_eff); + + for (int i = 0; i < out.row_eff; i++) { + for (int j = 0; j < out.col_eff; j++) { + out.mat[i][j] = supression_op(kernel, target, i, j); + } + } + + return out; +} + + +/* + * Procedure merge_array + * + * Merges two subarrays of n with n[left..mid] and n[mid+1..right] + * to n itself, with n now ordered ascendingly + * */ +void merge_array(int *n, int left, int mid, int right) { + int n_left = mid - left + 1; + int n_right = right - mid; + int iter_left = 0, iter_right = 0, iter_merged = left; + int arr_left[n_left], arr_right[n_right]; + + for (int i = 0; i < n_left; i++) { + arr_left[i] = n[i + left]; + } + + for (int i = 0; i < n_right; i++) { + arr_right[i] = n[i + mid + 1]; + } + + while (iter_left < n_left && iter_right < n_right) { + if (arr_left[iter_left] <= arr_right[iter_right]) { + n[iter_merged] = arr_left[iter_left++]; + } else { + n[iter_merged] = arr_right[iter_right++]; + } + iter_merged++; + } + + while (iter_left < n_left) { + n[iter_merged++] = arr_left[iter_left++]; + } + while (iter_right < n_right) { + n[iter_merged++] = arr_right[iter_right++]; + } +} + + +/* + * Procedure merge_sort + * + * Sorts array n with merge sort algorithm + * */ +void merge_sort(int *n, int left, int right) { + if (left < right) { + int mid = left + (right - left) / 2; + + merge_sort(n, left, mid); + merge_sort(n, mid + 1, right); + + merge_array(n, left, mid, right); + } +} + + +/* + * Procedure print_array + * + * Prints all elements of array n of size to stdout + * */ +void print_array(int *n, int size) { + for (int i = 0; i < size; i++ ) printf("%d ", n[i]); + printf("\n"); +} + + +/* + * Function get_median + * + * Returns median of array n of length + * */ +int get_median(int *n, int length) { + int mid = length / 2; + if (length & 1) return n[mid]; + + return (n[mid - 1] + n[mid]) / 2; +} + + +/* + * Function get_floored_mean + * + * Returns floored mean from an array of integers + * */ +long get_floored_mean(int *n, int length) { + long sum = 0; + for (int i = 0; i < length; i++) { + sum += n[i]; + } + + return sum / length; +} + +/** + * Function index_to_row_major + * + * Returns the index of a matrix element in row-major order + */ +int index_to_row_major(int row, int col, int row_eff, int col_eff) { + return row * col_eff + col; +} + +// __device__ int d_index_to_row_major(int row, int col, int row_eff, int col_eff) { +// return row * col_eff + col; +// } + +/** + * Function row_major_to_index + * + * Returns the row and column of a matrix element in row-major order + */ +void row_major_to_index(int index, int row_eff, int col_eff, int *row, int *col) { + *row = index / col_eff; + *col = index % col_eff; +} + +// __device__ void d_row_major_to_index(int index, int row_eff, int col_eff, int *row, int *col) { +// *row = index / col_eff; +// *col = index % col_eff; +// } + +/** + * Function map_matrix + * + * Returns a row major matrix of the input matrix. + **/ +int* map_matrix(int mat[][100], int row, int col) { + int* map = (int*) malloc(sizeof(int) * row * col); + for (int i = 0; i < row; i++) { + for (int j = 0; j < col; j++) { + map[index_to_row_major(i, j, row, col)] = mat[i][j]; + } + } + return map; +} + +/* + * Function map_matrix_extended + * + * Returns a row major matrix of the input matrix. + **/ +int* map_matrix_extended(int** mat, int row, int col) { + int* map = (int*) malloc(sizeof(int) * row * col); + for (int i = 0; i < row; i++) { + for (int j = 0; j < col; j++) { + map[index_to_row_major(i, j, row, col)] = mat[i][j]; + } + } + return map; +} + + +/** + * Function reverse_map_matrix + * + * Returns a matrix of the input row major matrix. + */ +int** reverse_map_matrix(int* map, int row, int col) { + int** mat = (int**) malloc(sizeof(int*) * row); + for (int i = 0; i < row; i++) { + mat[i] = (int*) malloc(sizeof(int) * col); + for (int j = 0; j < col; j++) { + mat[i][j] = map[index_to_row_major(i, j, row, col)]; + } + } + return mat; +} + +/** + * Function rm_to_matrix_object + * + * Return Matrix struct of row major matrix + */ +Matrix rm_to_matrix_object(int* map, int row, int col) { + Matrix mat; + init_matrix(&mat, row, col); + for (int i = 0; i < row; i++) { + for (int j = 0; j < col; j++) { + mat.mat[i][j] = map[index_to_row_major(i, j, row, col)]; + } + } + return mat; +} + +/** + * Function rm_to_list_matrix_object + * + * Return List of Matrix Struct of row major matrix + */ +Matrix* rm_to_list_matrix_object(int* map, int row, int col, int row_inner, int col_inner) { + Matrix* mat = (Matrix*) malloc(sizeof(Matrix) * row); + for (int i = 0; i < row; i++) { + init_matrix(&mat[i], row_inner, col_inner); + int pad = i * col; + for (int j = 0; j < row_inner; j++) { + for (int k = 0; k < col_inner; k++) { + int index = index_to_row_major(j, k, row_inner, col_inner) + pad; + mat[i].mat[j][k] = map[index]; + } + } + } + return mat; +} +/** + * Function list_matrix_object_to_rm + * + * Return row major matrix of list of Matrix struct + */ +int* list_matrix_object_to_rm(Matrix* mat, int num_matrix, int row_inner, int col_inner) { + int* map = (int*) malloc(sizeof(int) * num_matrix * row_inner * col_inner); + for (int i = 0; i < num_matrix; i++) { + int pad = i * row_inner * col_inner; + for (int j = 0; j < row_inner; j++) { + for (int k = 0; k < col_inner; k++) { + int index = index_to_row_major(j, k, row_inner, col_inner) + pad; + map[index] = mat[i].mat[j][k]; + } + } + } + + return map; +} + +/** + * Function cuda_convolution + * + * Returns a matrix of the convolution of the input matrix with the kernel + */ +void cuda_convolution(int* out_mat_rm, int* arr_mat_rm, int* kernel_rm, int row_eff, int col_eff, int kernel_row, int kernel_col, int curr_mat) { + // Calculate real row and column of input matrix. + int row = row_eff + kernel_row - 1; + int col = col_eff + kernel_col - 1; + + // Calculate padding target and output matrix. + int pad = curr_mat * row * col; + int pad_out = curr_mat * row_eff * col_eff; + + // For each element in input matrix that is not on the boundary, + for (int i = 0 ; i < row_eff; i++) { + for (int j = 0; j < col_eff; j++) { + // Convolution of the element with the kernel. + // Calculate the sum of the kernel and the input matrix. + int intermediate_sum = 0; + for (int k = 0; k < kernel_row; k++) { + for (int l = 0; l < kernel_col; l++) { + int index = index_to_row_major(i + k, j + l, row, col) + pad; + int kernel_index = index_to_row_major(k, l, kernel_row, kernel_col); + intermediate_sum += arr_mat_rm[index] * kernel_rm[kernel_index]; + // Print all i,j,k,l + // printf("i:%d, j:%d, k:%d, l:%d\n", i, j, k, l); + + } + } + // Store the sum in the output matrix. + out_mat_rm[index_to_row_major(i, j, row_eff, col_eff) + pad_out ] = intermediate_sum; + } + } +} + +// __global__ void d_cuda_convolution(int* d_out_mat, int* arr_mat_rm, int* kernel_rm, int row_eff, int col_eff, int kernel_row, int kernel_col) { +// // Calculate real row and column of input matrix. +// int row = row_eff + kernel_row - 1; +// int col = col_eff + kernel_col - 1; +// +// // Determine current matrix from block; +// int curr_mat = blockIdx.y; +// +// // Calculate padding target and output matrix. +// int pad = curr_mat * row * col; +// int pad_out = curr_mat * row_eff * col_eff; +// +// // Get i, and j from threadIdx +// int tid = blockIdx.x * blockDim.x + threadIdx.x; +// int i, j; +// d_row_major_to_index(tid, row_eff, col_eff, &i, &j); +// +// // Calculate element in input matrix that is not on the boundary, +// if (i < row_eff && j < col_eff) { +// int intermediate_sum = 0; +// for (int k = 0; k < kernel_row; k++) { +// for (int l = 0; l < kernel_col; l++) { +// int index = d_index_to_row_major(i + k, j + l, row, col) + pad; +// int kernel_index = d_index_to_row_major(k, l, kernel_row, kernel_col); +// intermediate_sum += arr_mat_rm[index] * kernel_rm[kernel_index]; +// } +// } +// d_out_mat[d_index_to_row_major(i, j, row_eff, col_eff) + pad_out] = intermediate_sum; +// } +// } + + +// main() driver +int main() { + // Time. + clock_t t; + t = clock(); + + int kernel_row, kernel_col, target_row, target_col, num_targets; + + // reads kernel's row and column and initalize kernel matrix from input + scanf("%d %d", &kernel_row, &kernel_col); + Matrix kernel = input_matrix(kernel_row, kernel_col); + + // reads number of target matrices and their dimensions. + // initialize array of matrices and array of data ranges (int) + scanf("%d %d %d", &num_targets, &target_row, &target_col); + Matrix* arr_mat = (Matrix*)malloc(num_targets * sizeof(Matrix)); + int arr_range[num_targets]; + + // Calculate variable for cuda computing. + int a = (target_row-kernel_row+1) * (target_col-kernel_col+1); + int b = 1024; + int block_size = a/b + (a % b != 0); // ceil(a/b) + int threads_per_block = 1024; + int row_eff = target_row - kernel_row + 1; + int col_eff = target_col - kernel_col + 1; + + + // Allocate variable. + // rm means row-major. It's indicate matrix are in row-major order. + // Variable declaration. + int * arr_mat_rm, * d_arr_mat_rm, *out_mat_rm, *d_out_mat_rm, *kernel_rm, *d_kernel_rm; + int size_arr_mat, size_out_mat, size_kernel; + // cudaError err; + + // Allocate input matrix in device and host. + size_arr_mat = num_targets * target_row * target_col; + arr_mat_rm = (int*)malloc(sizeof(int*) * size_arr_mat); + // cudaMalloc(&d_arr_mat_rm, sizeof(int*) * size_arr_mat); + + // Allocate output matrix in device and host. + size_out_mat = num_targets * row_eff * col_eff; + out_mat_rm = (int*)malloc(sizeof(int*) * size_out_mat); + // cudaMalloc(&d_out_mat_rm, sizeof(int*) * size_out_mat); + + // Allocate kernel matrix in host. + size_kernel = kernel_row * kernel_col; + kernel_rm = (int*)malloc(sizeof(int) * size_kernel); + // Store kernel in row major form and allocate kernel for device. + kernel_rm = map_matrix(kernel.mat, kernel_row, kernel_col); + // cudaMalloc(&d_kernel_rm, sizeof(int) * size_kernel); + // err = cudaMemcpy(d_kernel_rm, kernel_rm, sizeof(int) * size_kernel, cudaMemcpyHostToDevice); + // if (err != cudaSuccess) { + // printf("Error copy host to device: %s\n", cudaGetErrorString(err)); + // } + + + // Read each target matrix. + for (int i = 0; i < num_targets; i++) { + arr_mat[i] = input_matrix(target_row, target_col); + } + // Store each target matrix in row major form and allocate target matrix for device. + arr_mat_rm = list_matrix_object_to_rm(arr_mat, num_targets, target_row, target_col); + // cudaMalloc(&d_arr_mat_rm, sizeof(int) * size_arr_mat); + // err = cudaMemcpy(d_arr_mat_rm, arr_mat_rm, sizeof(int) * size_arr_mat, cudaMemcpyHostToDevice); + // if (err != cudaSuccess) { + // printf("Error copy host to device: %s\n", cudaGetErrorString(err)); + // } + + // For each target matrix, compute their convolution matrices. + // dim3 grid, block; + // block.x = block_size; + // block.y = num_targets; + // grid.x = threads_per_block; + // d_cuda_convolution<<<grid, block>>>(d_out_mat_rm, d_arr_mat_rm, d_kernel_rm, row_eff, col_eff, kernel_row, kernel_col); + // cudaMemcpy(out_mat_rm, d_out_mat_rm, sizeof(int) * size_out_mat, cudaMemcpyDeviceToHost); + for (int i = 0; i < num_targets; i++){ + cuda_convolution(out_mat_rm, arr_mat_rm, kernel_rm, row_eff, col_eff, kernel_row, kernel_col, i); + } + arr_mat = rm_to_list_matrix_object(out_mat_rm, num_targets, row_eff*col_eff, row_eff, col_eff); + + // // Free cuda Memory. + // cudaFree(d_arr_mat_rm); + // cudaFree(d_out_mat_rm); + // cudaFree(d_kernel_rm); + + // For each target matrix, and compute their data ranges + for (int i = 0; i < num_targets; i++) { + arr_range[i] = get_matrix_datarange(&arr_mat[i]); + } + + // sort the data range array + merge_sort(arr_range, 0, num_targets - 1); + + int median = get_median(arr_range, num_targets); + int floored_mean = get_floored_mean(arr_range, num_targets); + + // print the min, max, median, and floored mean of data range array + printf("%d\n%d\n%d\n%d\n", + arr_range[0], + arr_range[num_targets - 1], + median, + floored_mean); + + // Print execution time in seconds. + t = clock() - t; + printf("\nRuntime: %f s\n", ((float)t) / CLOCKS_PER_SEC); + + return 0; +} -- GitLab